Reverse-engineering language acquisition 2021-07-08 @ PAISS

Alejandrina (Alex) Cristia

Laboratoire de Sciences Cognitives et Psycholinguistique

Language Acquisition Across Cultures Team

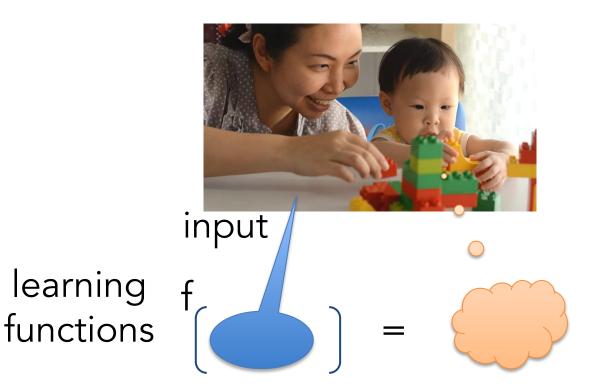
Thanks to my team for help with the slides!

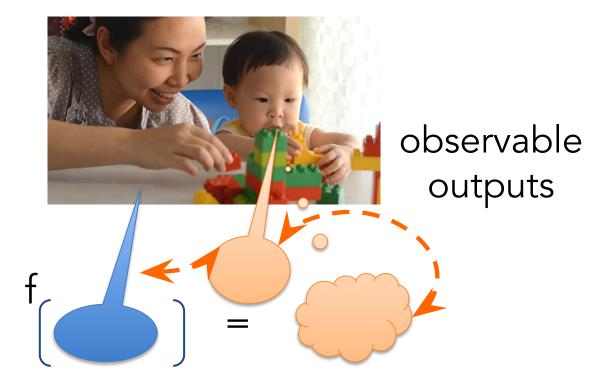
Erh, what IS language acquisition?

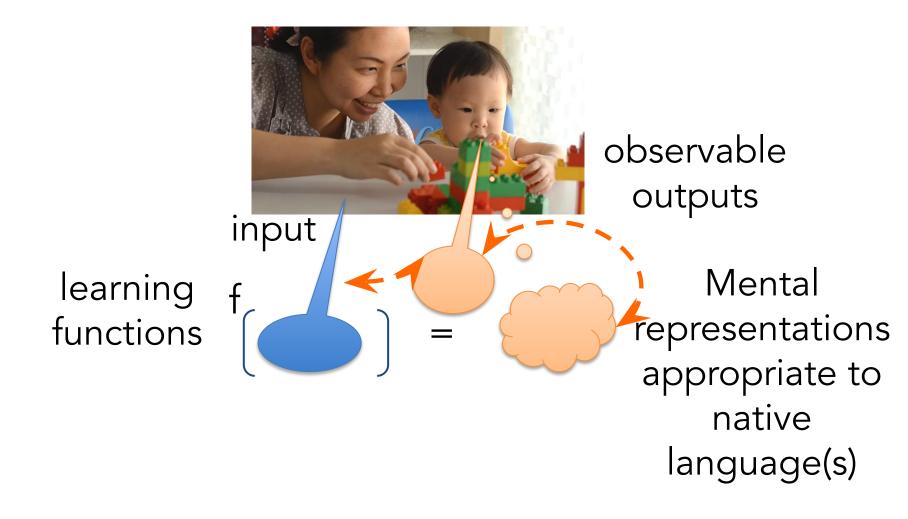
Which of the following are true?

- Please vote TRUE= 👍 🗧 ; FALSE = 😔
- Newborns prefer listening to their native language than to an unfamiliar language
- Newborns know their name
- By 6 months, babies know their name
- By 6 months, babies say their first word
- By 12 months, babies say their first word

Mental representations appropriate to native language(s)



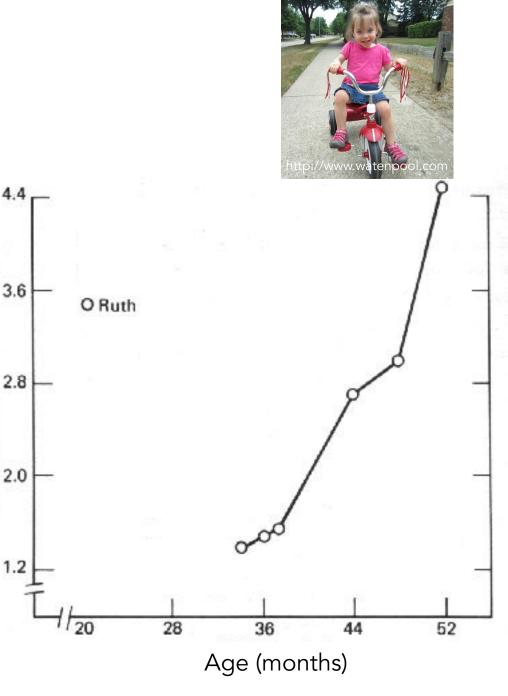




Which of the following are true?

Please vote TRUE= 👍 ; FALSE = 😳

- Humans and chimpanzees share a majority of their genetic information
- In terms of their visual skills, humans and chimpanzees are more similar to each other than humans and killer whales are
- In terms of their communication system, humans and chimpanzees are more similar to each other than humans and killer whales are
- You can raise a chimpanzee to use language like human babies do



Average number of words per sentence

Terrace 1979 Science

drink

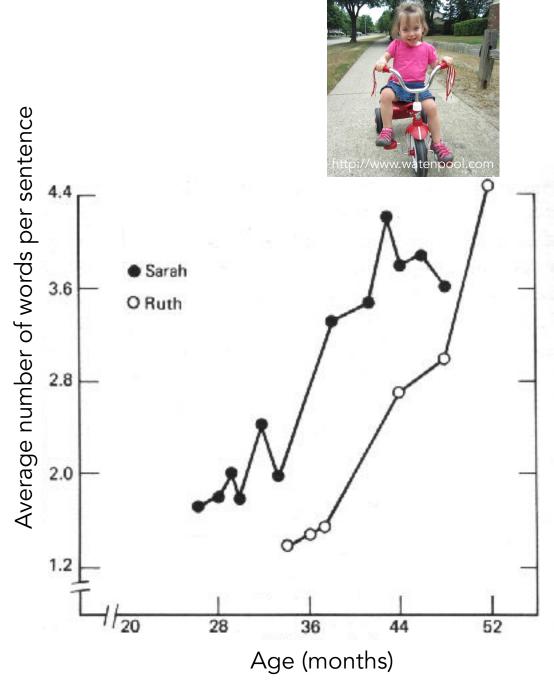
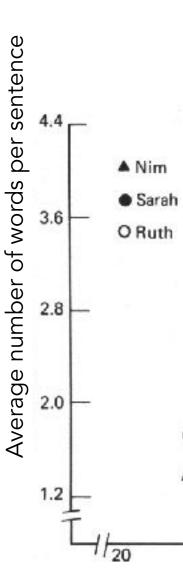


Image courtesy of Dr. Michael Fetters under a Creative Commons license: BY-SA ID 2012 Repents of the University of Michigan

more

Terrace 1979 Science



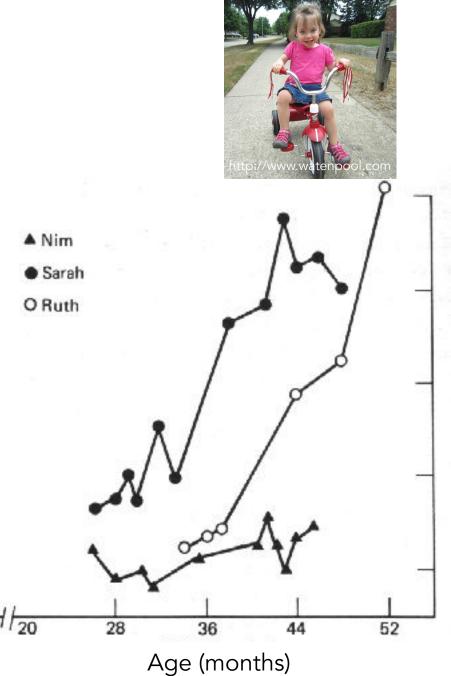
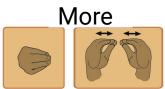
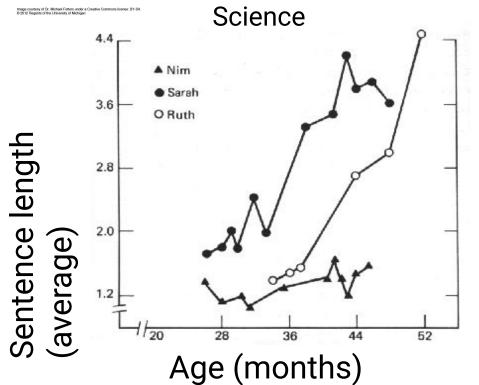


Image courtesy of Dr. Michael Fetters under a Creative Commons license: B1 © 2012 Regents of the University of Michigan

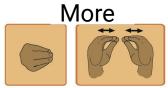


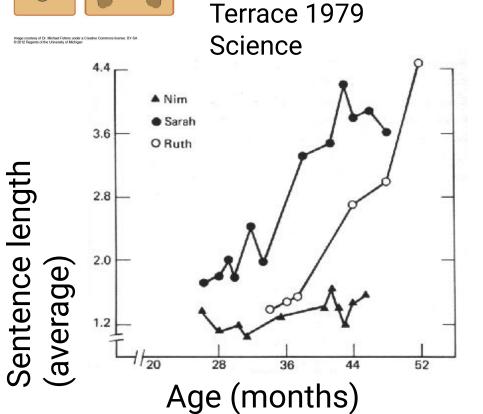
Terrace 1979

esy of Dr. Michael Fetters under ents of the University of Michiga

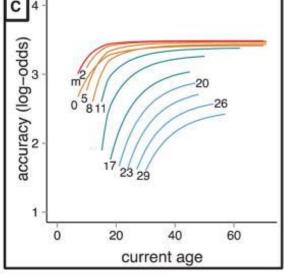


Innate





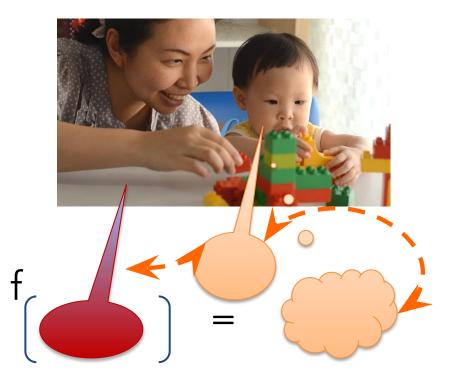




 monolinguals
 age of exposure: 0-9 y.o.
 age of exposure: 10-19 y.o.
 age of exposure: 20-30 y.o.

Hartshorn et al. 2018 Cognition

A more specific language acquisition theory (v 2.0): Adult input "fuels" language acquisition



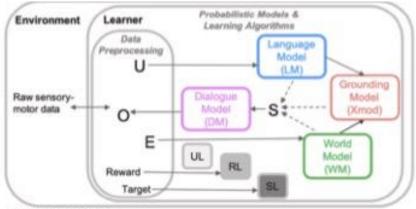
Adults' speech is high quality

- a stable linguistic system
- developed "theory of mind"

One on one

- topics adapted to child's attention & abilities
- use of "Parentese"

Socio-Computational Architecture of Language Acquisition



Probabilistic Models

- Language Model. Estimates P(U), the probability distribution of message U.
- · World Model. Estimates P(E), the probability of event E.
- Grounding Model. Estimates probabilities of association between verbal form and event (P(U,E)). Assumes that the intended meaning is accessible here-and-now.
- Dialogue Model. Computes the probability of communicative output O given message and current state of world S (P(O|S)). S is computed from a representation of past events and utterances.

Learning Algorithms

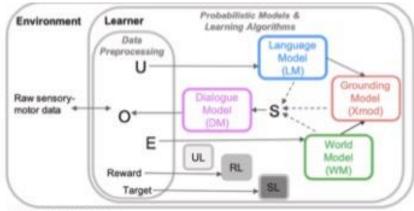
- Unsupervised Learning (UL). Tries to optimize the likelihood of observing a given input (U or E). Language Models (LM) and World Models (WM) can be learned in this fashion.
- Reinforcement Learning (RL). Tries to optimize the expected reward (Reward), Dialogue Models (DM) can be learned this way.
- Supervised Learning (SL). Tries to minimize the discrepancy between an
 expected response (Target) provided by the environment and actual response O.
 DMs can be learned in this way.

Data Preprocessing

- Filtering: what sensory data counts as a language input (U), a world input (E), a Reward, a Target ?
- · Segmenting: what are the units of the language stream (U), what is an event (E) ?
- Routing: is there an intended/corrective target (Target), and if so, what output O is it supposed to correct? If there is a referential act, which parts of U map to which part of E for cross modal learning?

Tsuji et al. 2021 Cognition

Socio-Computational Architecture of Language Acquisition



Probabilistic Models

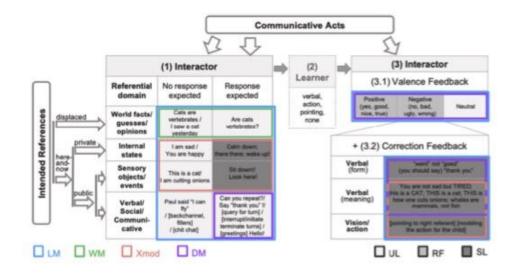
- Language Model. Estimates P(U), the probability distribution of message U.
- World Model. Estimates P(E), the probability of event E.
- Grounding Model. Estimates probabilities of association between verbal form and event (P(U,E)). Assumes that the intended meaning is accessible here-and-now.
- Dialogue Model. Computes the probability of communicative output O given message and current state of world S (P(O|S)). S is computed from a representation of past events and utterances.

Learning Algorithms

- Unsupervised Learning (UL). Tries to optimize the likelihood of observing a given input (U or E). Language Models (LM) and World Models (WM) can be learned in this fashion.
- Reinforcement Learning (RL). Tries to optimize the expected reward (Reward), Dialogue Models (DM) can be learned this way.
- Supervised Learning (SL). Tries to minimize the discrepancy between an
 expected response (Target) provided by the environment and actual response O.
 DMs can be learned in this way.

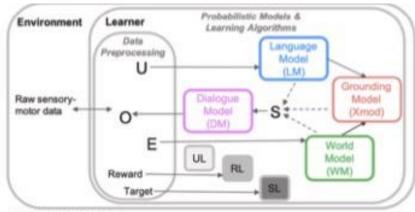
Data Preprocessing

- Filtering: what sensory data counts as a language input (U), a world input (E), a Reward, a Target ?
- Segmenting: what are the units of the language stream (U), what is an event (E) ?
- Routing: is there an intended/corrective target (Target), and if so, what output O is it supposed to correct? If there is a referential act, which parts of U map to which part of E for cross modal learning?



Tsuji et al. 2021 Cognition

Socio-Computational Architecture of Language Acquisition



Probabilistic Models

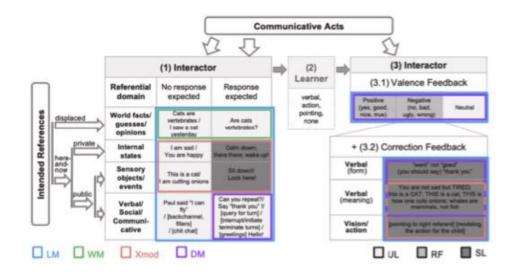
- Language Model. Estimates P(U), the probability distribution of message U.
- World Model. Estimates P(E), the probability of event E.
- Grounding Model. Estimates probabilities of association between verbal form and event (P(U,E)). Assumes that the intended meaning is accessible here-and-now.
- Dialogue Model. Computes the probability of communicative output O given message and current state of world S (P(O|S)). S is computed from a representation of past events and utterances.

Learning Algorithms

- Unsupervised Learning (UL). Tries to optimize the likelihood of observing a given input (U or E). Language Models (LM) and World Models (WM) can be learned in this fashion.
- Reinforcement Learning (RL). Tries to optimize the expected reward (Reward), Dialogue Models (DM) can be learned this way.
- Supervised Learning (SL). Tries to minimize the discrepancy between an
 expected response (Target) provided by the environment and actual response O.
 DMs can be learned in this way.

Data Preprocessing

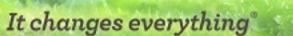
- Filtering: what sensory data counts as a language input (U), a world input (E), a Reward, a Target ?
- · Segmenting: what are the units of the language stream (U), what is an event (E) ?
- Routing: is there an intended/corrective target (Target), and if so, what output O is it supposed to correct? If there is a referential act, which parts of U map to which part of E for cross modal learning?



Overview of proposed differential contributions by corpus analysts, computer modelers, and experimentalists to different research avenues.

	Algorithms	Input Data	Outcome measures	Integration
Corpus Analysis		Estimate prevalence of the various referential and event types	Measures of language output maturity	Explanations of outcome/ input relationships in infants across cultures
Computer Modeling	Implementation of probabilistic models, learning and preprocessing algorithms	Estimate of outcomes as a function of prevalence of referential/event types in the input for each combination of algorithm and preprocessing		Predictions of outcomes of interventions
Experimental Studies	Proof-of-concept of preprocessing and learning algorithms		Measure of tacit knowledge (probabilistic models of infants)	

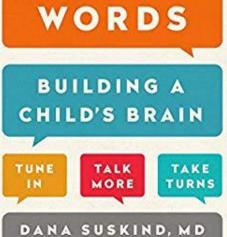
Tsuji et al. 2021 Cognition



Sing

PROVIDENCE

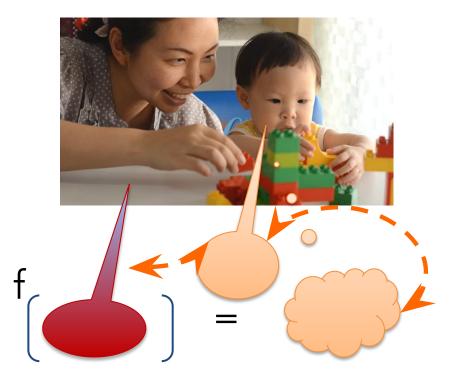
Read.



PEQUEÑOS

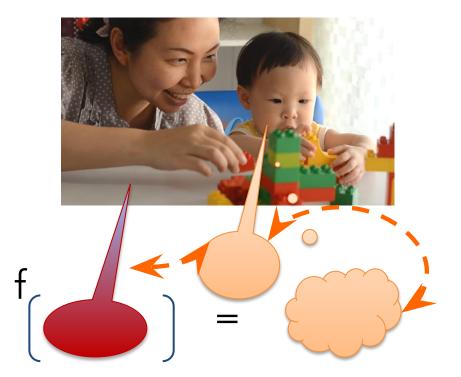
Thanks to Janet Bang for this selection!

The idea that Adult input "fuels" language acquisition



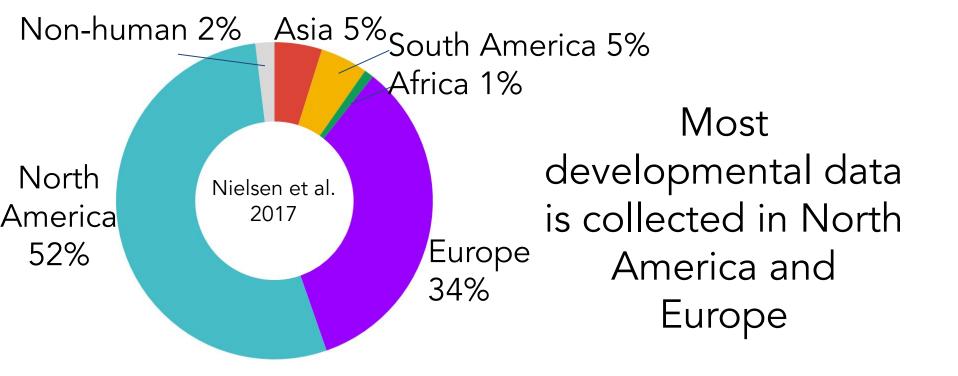
is based on *evidence*

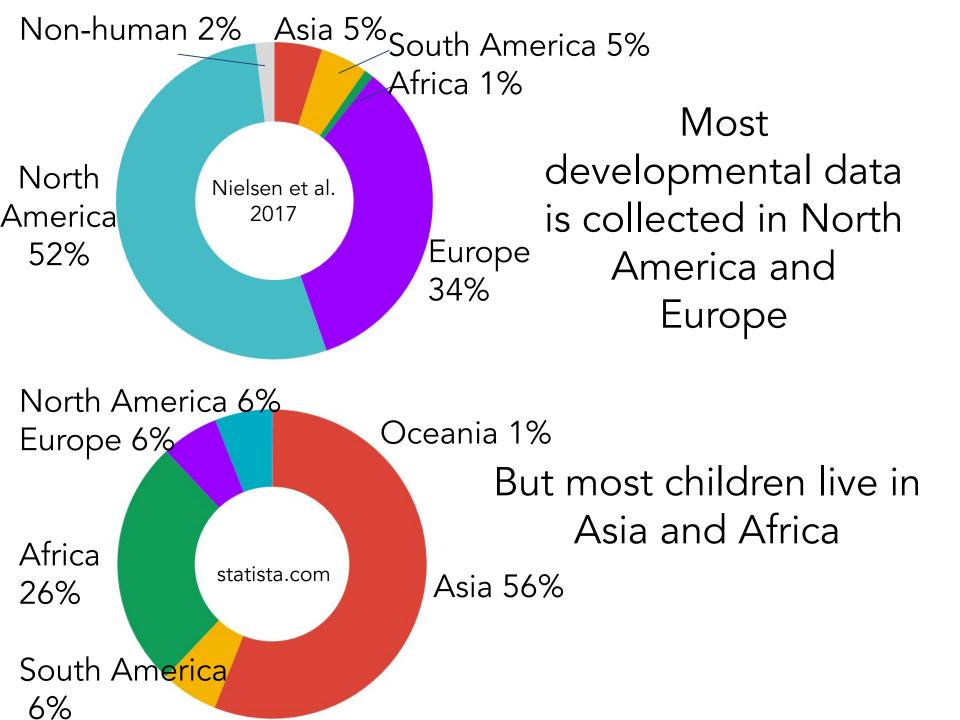
The idea that Adult input "fuels" language acquisition

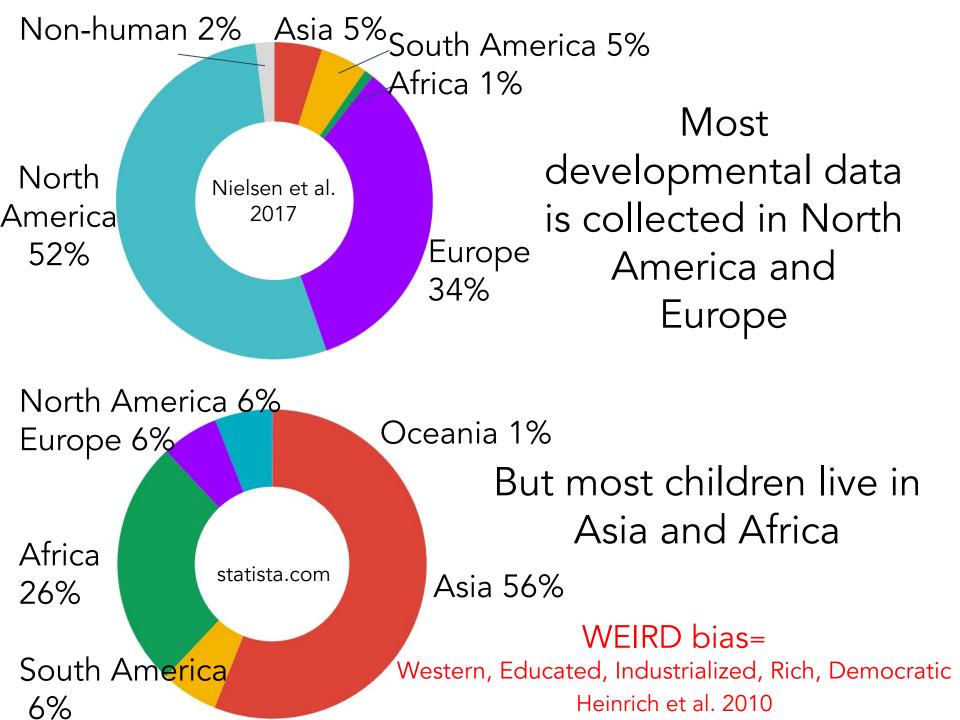


is based on *evidence*

but this evidence is <u>biased</u>



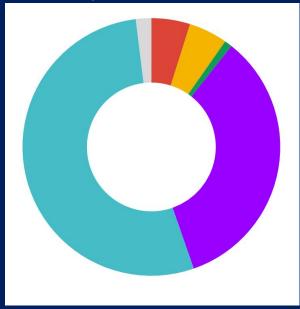




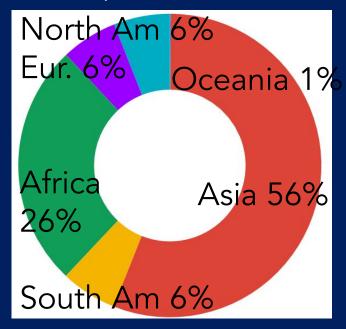
Please write in the chat where you grew up...

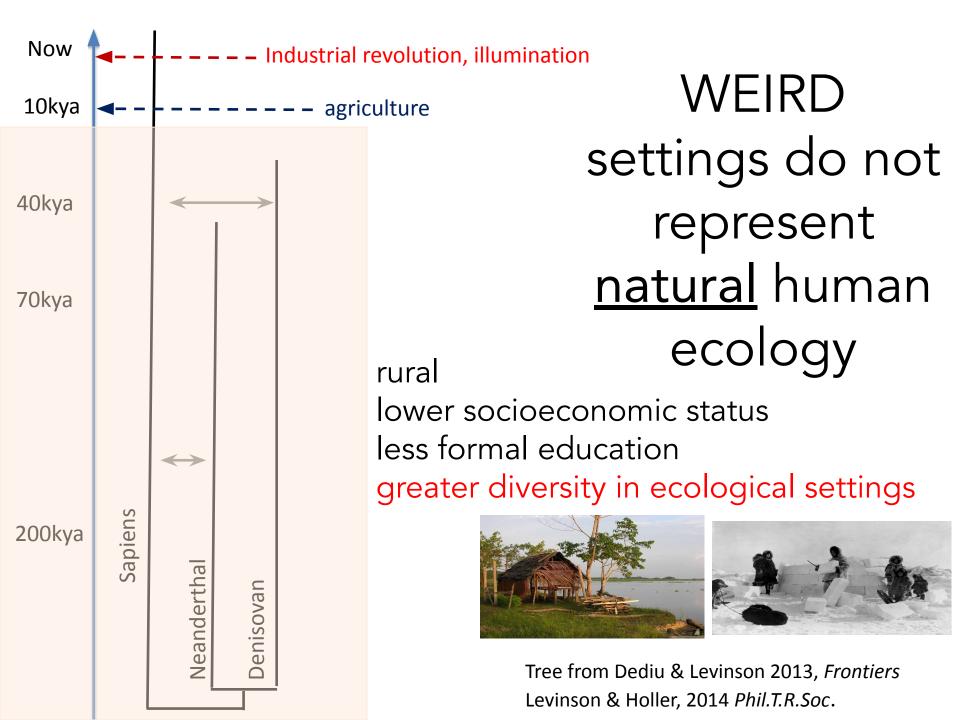
For instance, for me, that would be: Rosario (large city), Argentina, South America

Developmental research



Developmental reality





Does the WEIRD bias matter? Comparing 'urban' & 'rural' families

industrialized higher socioeconomic status more formal education fewer children single caregiver rural lower socioeconomic status less formal education more children shared caregiving

higher North-American prevalence urban dwellers child-directed speech average # children: 1.93 Statista 2021

Kung! hunter-gatherers average # children: 4 Konner 2016

Tsimane' hunter-farmers average # children: 9 Stieglitz et al. 2013

rural

lower prevalence child-directed speech predicted

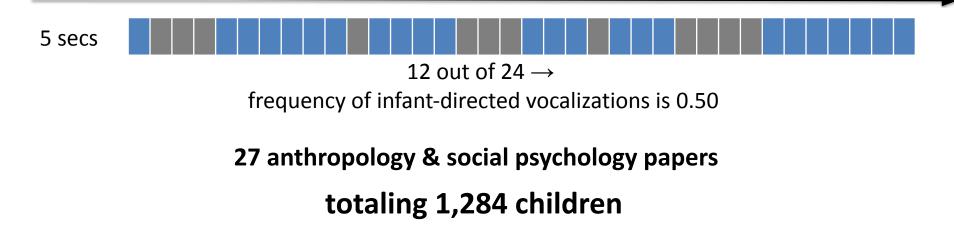
'Urban' versus 'rural' input quantities A systematic review of previous literature using behavioral observations

Most common method: "Time sampling"

frequency of infant-directed vocalizations is 0.50

'Urban' versus 'rural' input quantities A systematic review of previous literature using behavioral observations

Most common method: "Time sampling"



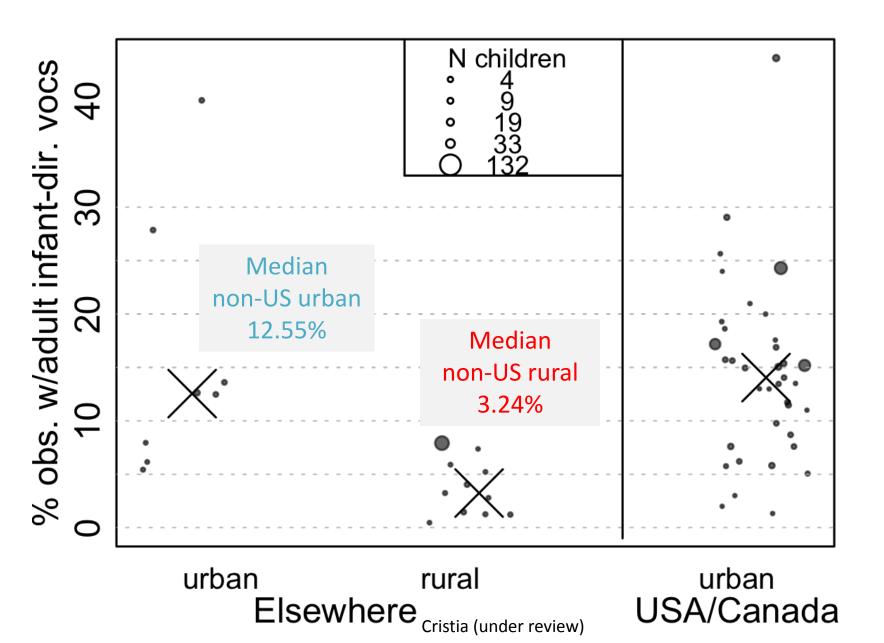
Dependent variable: % observations with infant-directed vocalizations ~ how frequently children are talked to in urban versus rural setting

Write your guess in the chat!

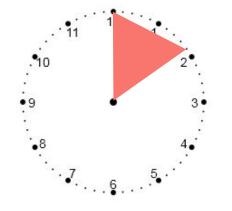
how frequently urban infants
get talked to $= 1 \rightarrow$ same amounthow frequently rural infants
get talked to $= 1 \rightarrow 10\%$ more in urban than rural $= 2 \rightarrow 100\%$ more (=twice as much)

in urban than rural

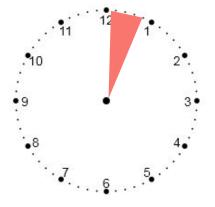
Urban/rural ratio: 3.87 (287% more)



Or, converted to time...



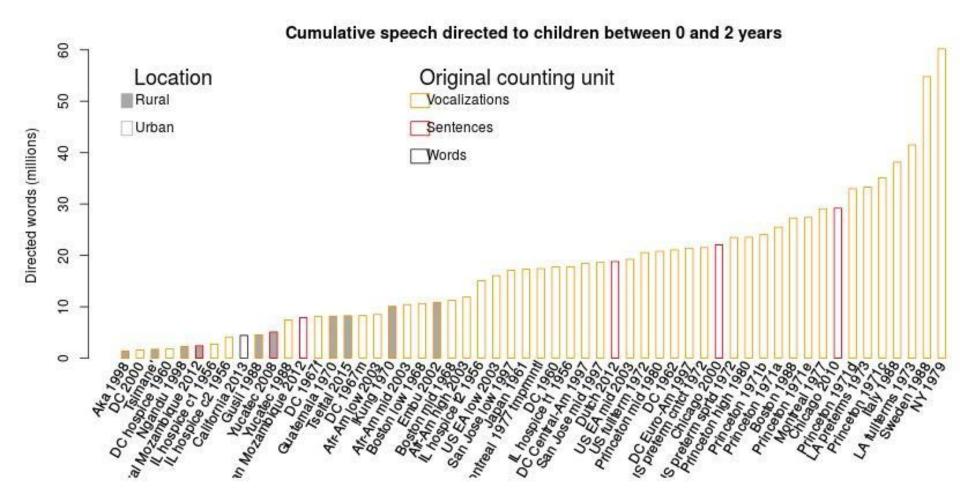
Non-urban, non-USA



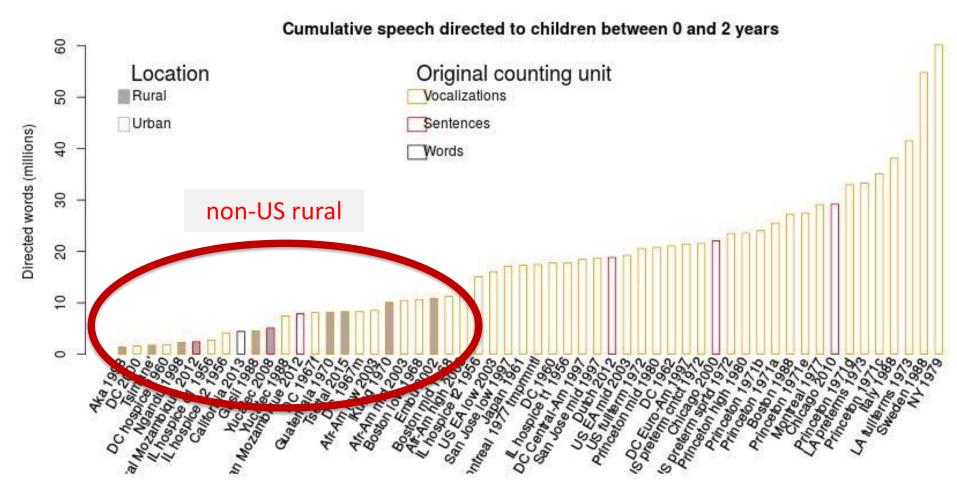
1.5hinfant-directedvocalizations (in a12h awake day)

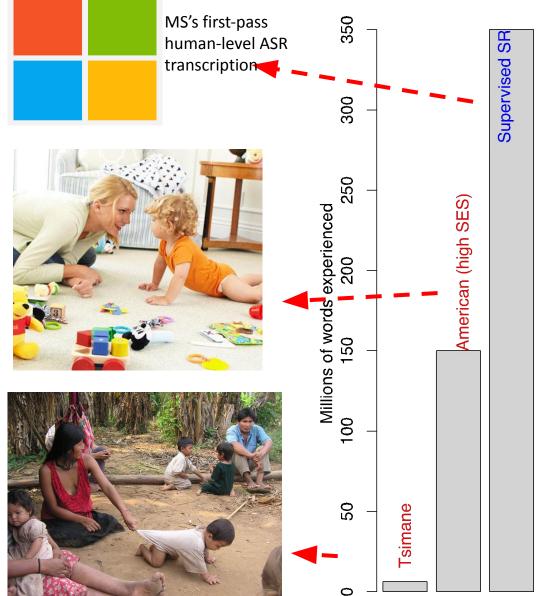
0.4h infant-directed vocalizations (in a 12h awake day)

Cross-population differences may be under-estimated xcult.shinyapps.io/vocsr/



Cross-population differences may be under-estimated xcult.shinyapps.io/vocsr/





Baby-machine comparison is even more astounding:

Children everywhere learn to perceive (& produce) speech with

<u>much less input</u> & <u>supervision</u> than machines do

humans cumulated to 10 years of age

Supervised SR: Xiong et al. 2016 arXiv American: Hart & Risley (1995) Tsimane: Cristia et al. (2019) *Child Dev*

Wait.

Maybe this is just methodological variation, or differential observer effects

Photo credit: Heidi Colleran homebank.talkbank.com

+ ecological + coverage

15 hours (15\$)

Casillas & Cristia (2019) Collabra

A day in the life...

14-hour recording centered on Natasha, aged 1 year (« key child ») + mother, sister, & father

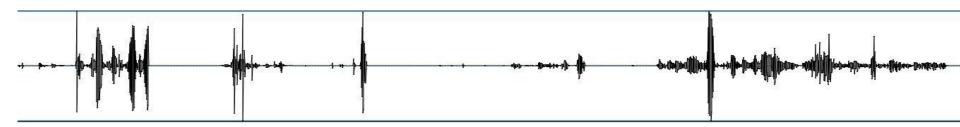
We extracted 5 seconds per hour periodically

full recording browsable at <u>https://sla.talkbank.org/TBB/homebank/Public/VanDam-Daylong/</u> <u>BN32/BN32_010007.cha</u>

downloadable via https://github.com/LAAC-LSCP/vandam-daylong-demo

VanDam, Mark (2018). VanDam Public Daylong HomeBank Corpus. doi:10.21415/T5388S

A day in the life...



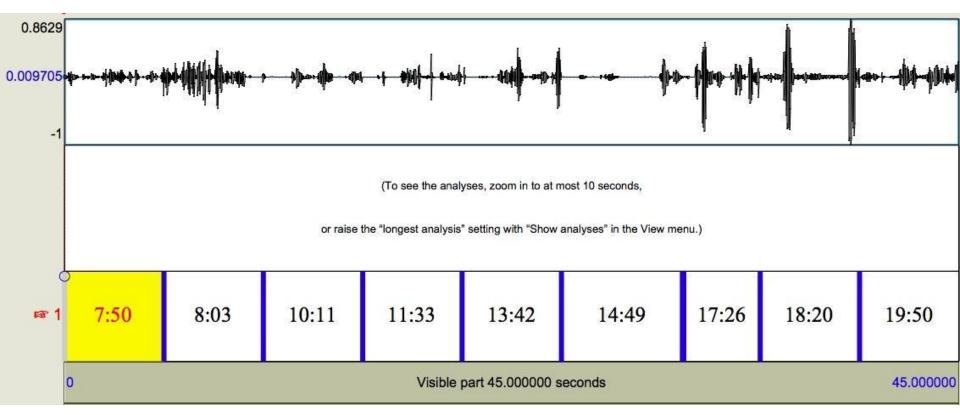
(To see the analyses, zoom in to at most 10 seconds,

or raise the "longest analysis" setting with "Show analyses" in the View menu.)

':28 am	8:28 am	9:28 am	10:28 am	11:28 am	12:28 pm	1:28 pm	2:28 pm	3:28 pm	4:28 pm	5:28 pm	6:28 pm	7:28 pm
Visible part 70.000000 seconds												

most of this child's day is silent, so we exclude silent sections & try again...

A day in the life...



« key child » only heard a couple of times

most speech is from mother & father

sibling heard too, talking to parents (not to « key child »)

A word on long-form recordings

cheap unobtrusive

field-work friendly

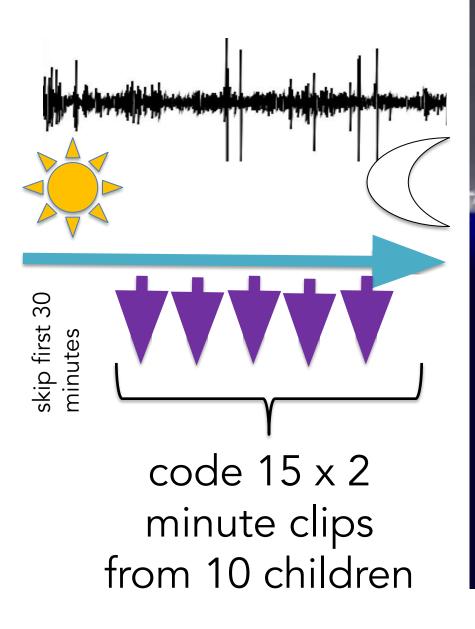
high re-use potential (anthropology, biology, economics, linguistics, etc.)

Ask me about all this!

SO. MUCH. DATA

private information

Gautheron, Rochat, & Cristia 2021 (preprint)



~3% data human-labeled

97% of data unlabeled

Preliminary results

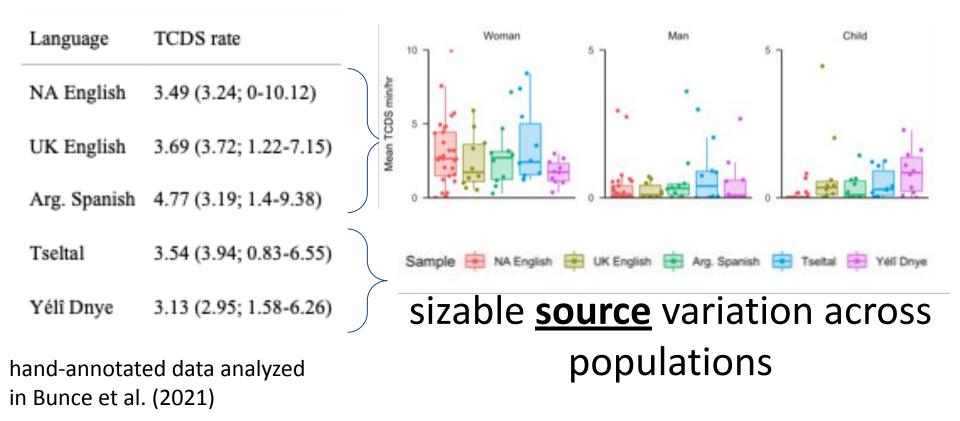
overall child-directed speech quantity fairly stable across populations

Language	TCDS rate	
NA English	3.49 (3.24; 0-10.12)	
UK English	3.69 (3.72; 1.22-7.15)	> urban
Arg. Spanish	4.77 (3.19; 1.4-9.38)	
Tseltal	3.54 (3.94; 0.83-6.55)	
Yélî Dnye	3.13 (2.95; 1.58-6.26)	> rural

hand-annotated data analyzed in Bunce et al. (2021)

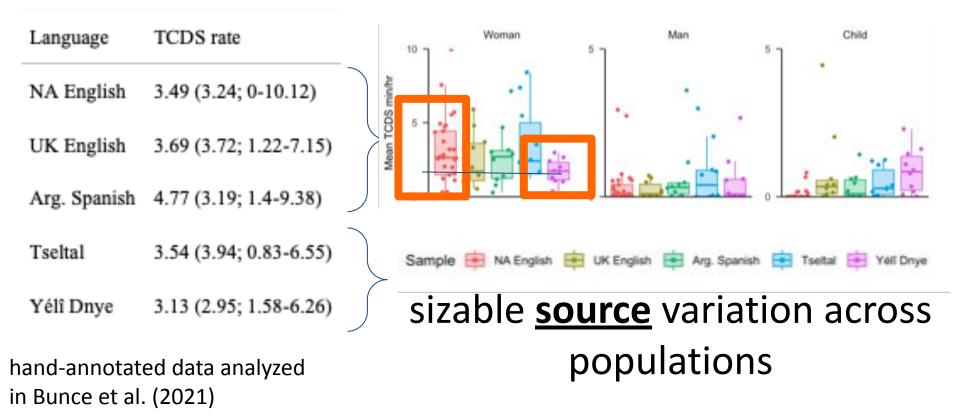
Preliminary results

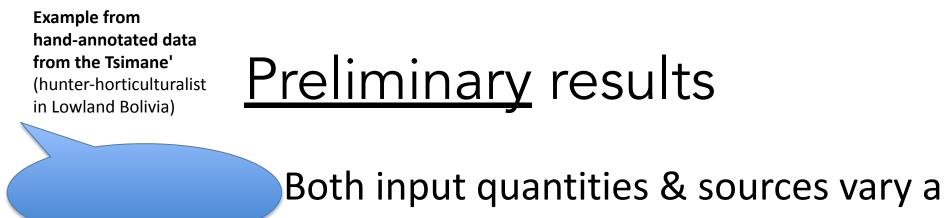
overall child-directed speech quantity fairly stable across populations



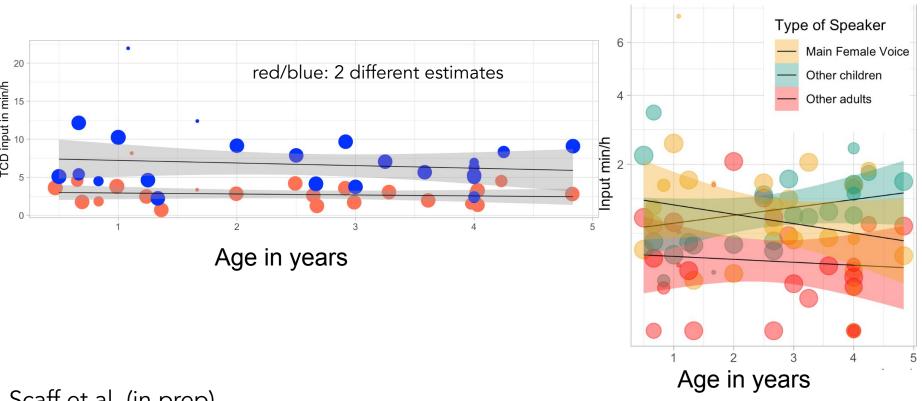
Preliminary results

overall child-directed speech quantity fairly stable across populations





lot across individuals



Scaff et al. (in prep)

Interim take-home messages

Very different results when looking at

- behavioral observations (3x difference between rural and urban, up to 10x across populations)
- long-form audiorecordings (overlap between rural and urban, up to 2/4x across populations)

<u>Technique</u>

<u>effects</u> short/whispered speech missed by observers?

Observer effects

perhaps rural vs. urban families react differently to observers?

Interim take-home messages

Very different results when looking at

- behavioral observations (3x difference between rural and urban, up to 10x across populations)
- long-form audiorecordings (overlap between rural and urban, up to 2/4x across populations)

<u>Technique</u>

<u>effects</u> short/whispered speech missed by observers? <u>Observer effects</u> perhaps rural vs. urban families react differently to observers? <u>Tremendous</u> individual variation!

Interim take-home messages

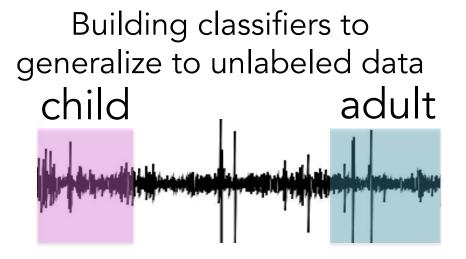
Very different results when looking at

- behavioral observations (3x difference between rural and urban, up to 10x across populations)
- long-form audiorecordings (overlap between rural and urban, up to 2/4x across populations)

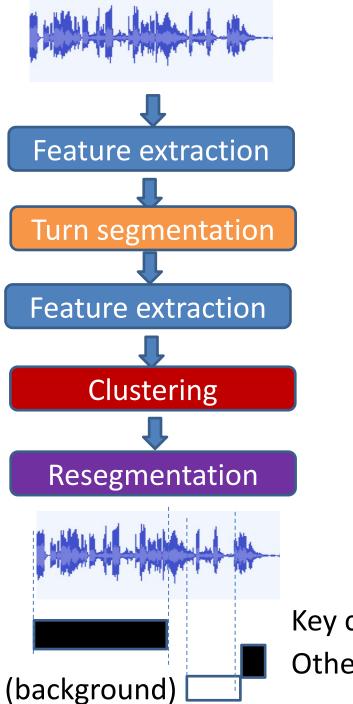
<u>Technique</u>

<u>effects</u> short/whispered speech missed by observers? <u>Observer effects</u> perhaps rural vs. urban families react differently to observers? <u>Tremendous</u> individual variation!

Estimation accuracy? based on very little data!



Talker diarization (who speaks when) DIHARD 2018, 2019/2021 Interspeech



Key child Other child

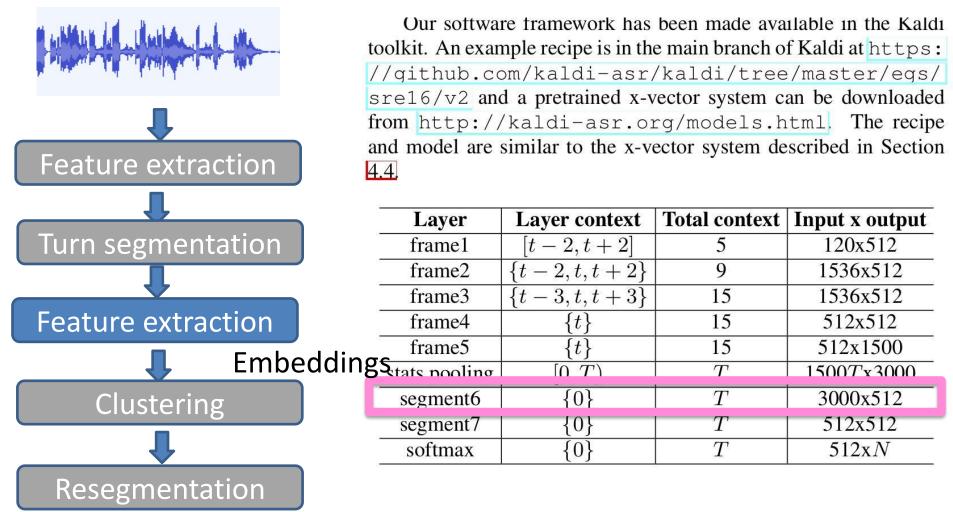
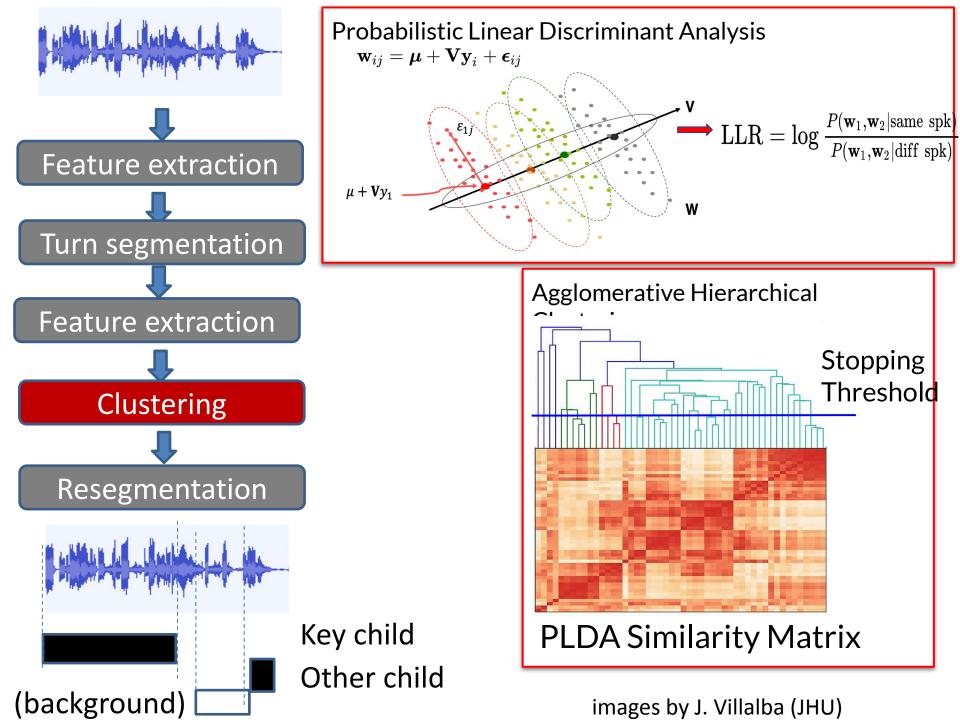


Table 1. The embedding DNN architecture. x-vectors are extracted at layer *segment6*, before the nonlinearity. The N in the softmax layer corresponds to the number of training speakers.

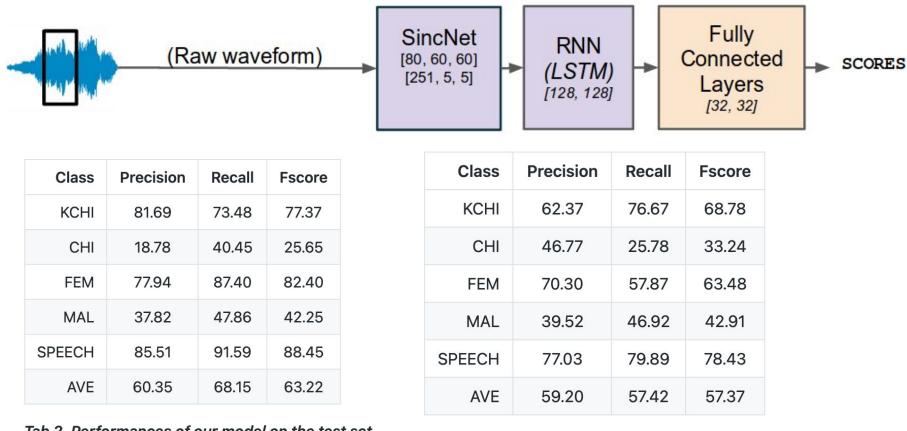
Key child Other child

(background)

Snyder et al. 2018 ICASSP



State of the art in voice type classification

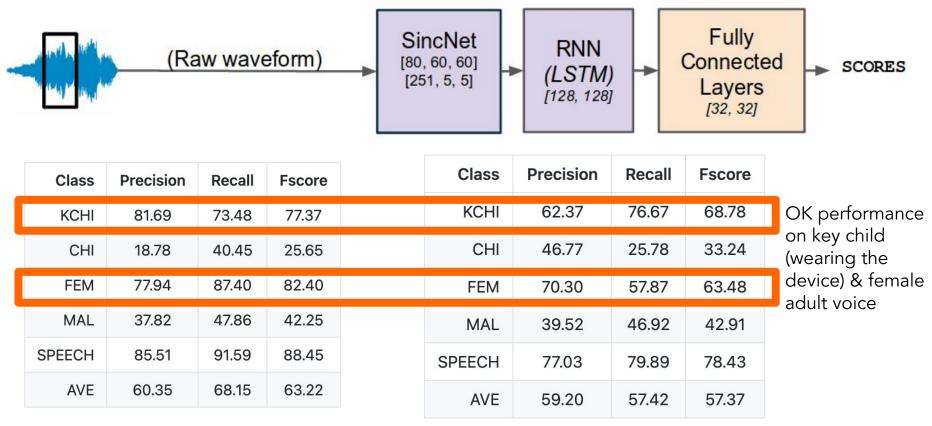


Tab 2. Performances of our model on the test set.

Tab 3. Performances of our model on the held-out set.

Lavechin et al. 2020 Interspeech code

State of the art in voice type classification

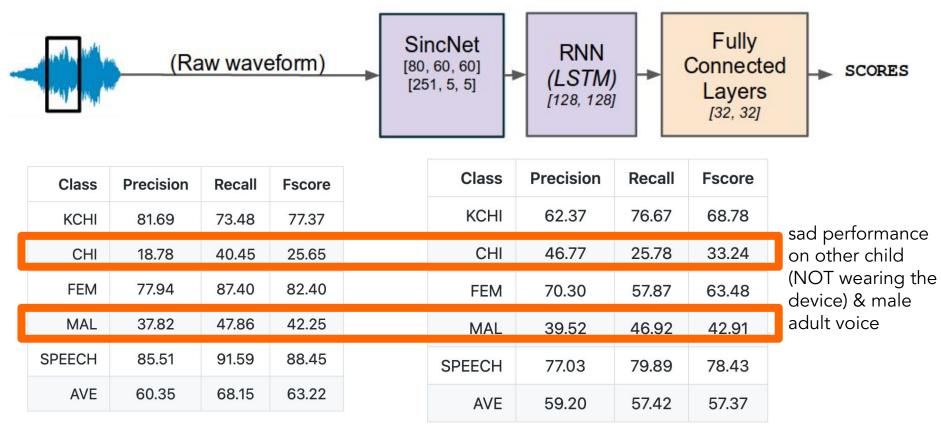


Tab 2. Performances of our model on the test set.

Tab 3. Performances of our model on the held-out set.

Lavechin et al. 2020 Interspeech code

State of the art in voice type classification



Tab 2. Performances of our model on the test set.

Tab 3. Performances of our model on the held-out set.

Lavechin et al. 2020 Interspeech code

(Algorithm) bias

Table 1: Description of the BabyTrain data set. Child-centered corpora included cover a wide range of conditions (including differen languages and recording devices). ACLEW-Random is kept as a held-out data set on which LENA and our model are compared.

				Cumulated utterance duration				
Corpus	LENA-recorded?	Language	Tot. Dur.	KCHI	OCH	MAL	FEM	UNK
		Bab	yTrain					
ACLEW-Starter	mostly	Mixture	1h30m	10m	5m	6m	20m	0m
Lena Lyon	yes	French	26h51m	4h33m	1h14m	1h9m	5h02m	1h0m
Namibia	no	Ju 'hoan	23h44m	1h56m	1h32m	41m	2h22m	1h01m
Paido	no	Greek, Eng., Jap.	40h08m	10h56m	0m	0m	0m	0m
Tsay	no	Mandarin	132h02m	34h07m	2h08m	10m	57h31m	28m
Tsimane	mostly	Tsimane	9h30m	37m	23m	11m	28m	0m
Vanuatu	no	Mixture	2h29m	12m	5m	5m	9m	1m
WAR2	yes	English (US)	50m	14m	0m	0m	0m	9m
			~50h key child			>6	50h female	e adult

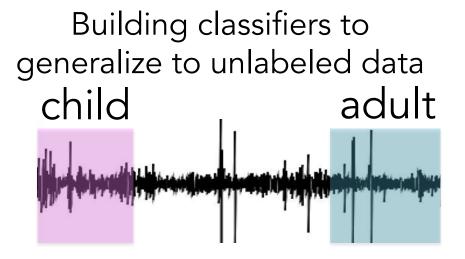
(Algorithm) bias

Table 1: Description of the BabyTrain data set. Child-centered corpora included cover a wide range of conditions (including differen languages and recording devices). ACLEW-Random is kept as a held-out data set on which LENA and our model are compared.

				Cumulated utterance duration				
Corpus	LENA-recorded?	Language	Tot. Dur.	KCHI	OCH	MAL	FEM	UNK
		Bab	yTrain					
ACLEW-Starter	mostly	Mixture	1h30m	10m	5m	6m	20m	0m
Lena Lyon	yes	French	26h51m	4h33m	1h14m	1h9m	5h02m	1h0m
Namibia	no	Ju 'hoan	23h44m	1h56m	1h32m	41m	2h22m	1h01m
Paido	no	Greek, Eng., Jap.	40h08m	10h56m	0m	0m	0m	0m
Tsay	no	Mandarin	132h02m	34h07m	2h08m	10m	57h31m	28m
Tsimane	mostly	Tsimane	9h30m	37m	23m	11m	28m	0m
Vanuatu	no	Mixture	2h29m	12m	5m	5m	9m	1m
WAR2	yes	English (US)	50m	14m	0m	0m	0m	9m
			~50h key child			>0	60h female	e adult

<5h other child

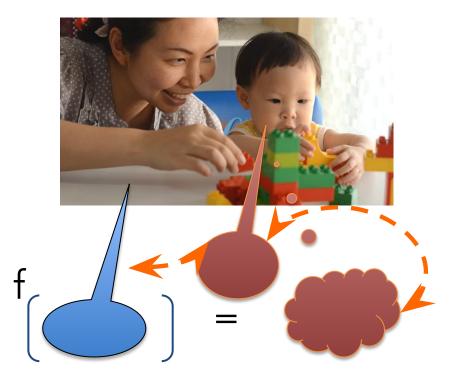
<3h male adult



Talker diarization (who speaks when) DIHARD 2018, 2019/2021 Interspeech

Addressee classification (whom are they talking to) ^{ComParE 2017 Interspeech} 2 classes, no team beat the baseline

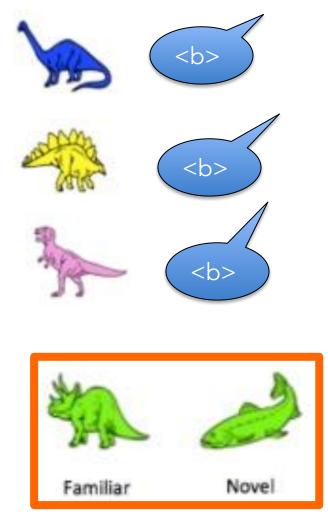
But what about acquisition outcomes?



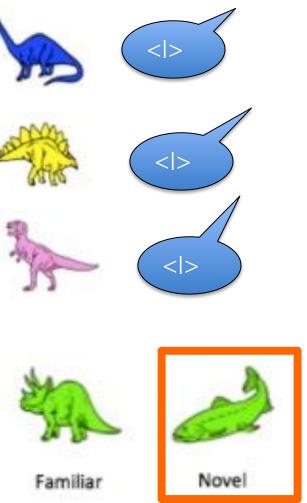
Example: categorization task with words

Example: categorization task with words

Example: categorization task with backward words



Example: categorization task with lemur calls





metalab.stanford.edu

The MetaLab database contains **2,496 effect** sizes from **30 meta-analyses** across two domains of cognitive development, based on data from **687** papers and **45,244 subjects**.

Funnel plot of bias in effect sizes

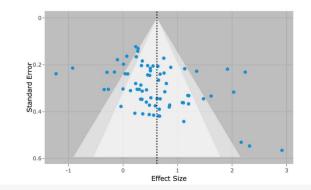
Interactive, community-augmented meta-analysis tools for cognitive development research

New: The 2020 Contribution Challenge Winners

Le Explore Apps

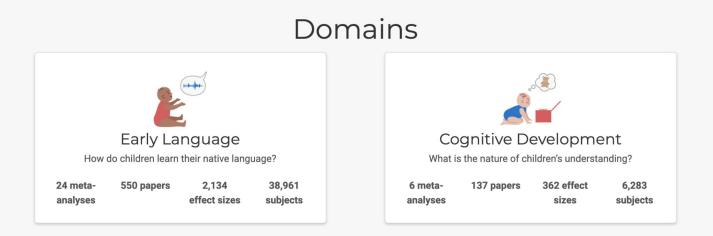
View Documentation >

New MetaLab User? Check out Getting Started first!



Data from ~30 phenomena (including looking-while-listening)

Over 45k children represented



metalab.stanford.edu

The MetaLab database contains **2,496 effect** sizes from **30 meta-analyses** across two domains of cognitive development, based on data from **687** papers and **45,244 subjects**.

Funnel plot of bias in effect sizes

Interactive, community-augmented meta-analysis tools for cognitive development research

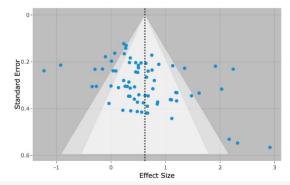
New: The 2020 Contribution Challenge Winners

Explore Apps

View Documentation >

Domains

New MetaLab User? Check out Getting Started first!



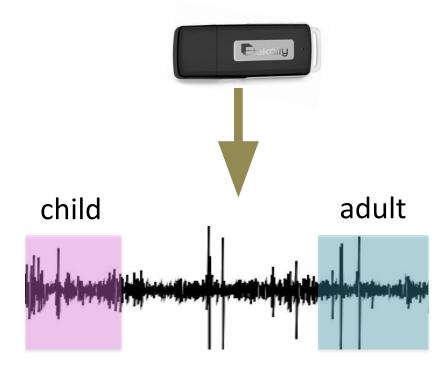
Data from ~30 phenomena (including "categorization task")

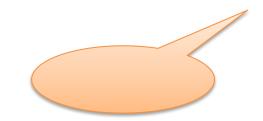
Over 45k children represented

even more biased than data discussed above! (1 eg: 75% NorthAm, 23% Eur, 2% Asia)

Cognitive Development What is the nature of children's understanding?

6 meta- 137 papers 362 effect 6,283 analyses sizes subjects





Long-form audio recordings to the rescue!

plenty happens before 1 year!

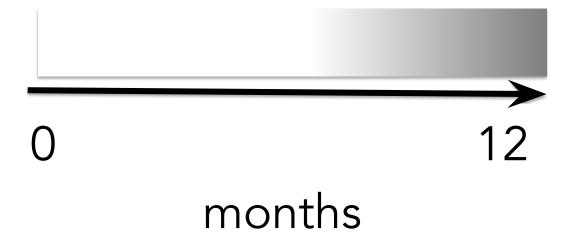


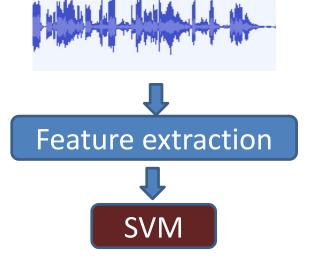
Terrace 1979 Science

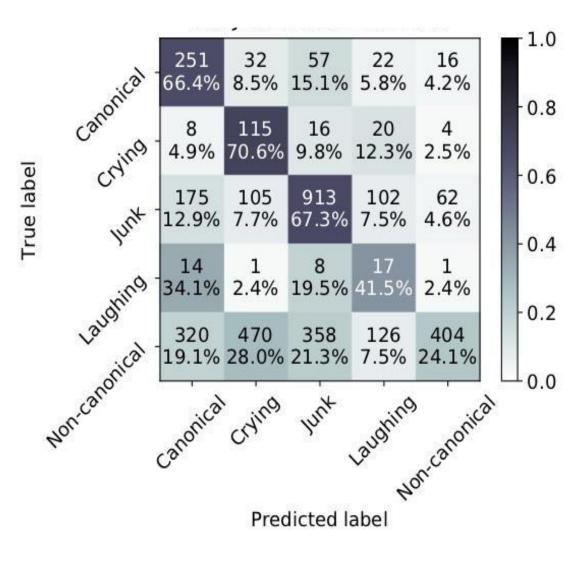
Vocalizations vary in complexity

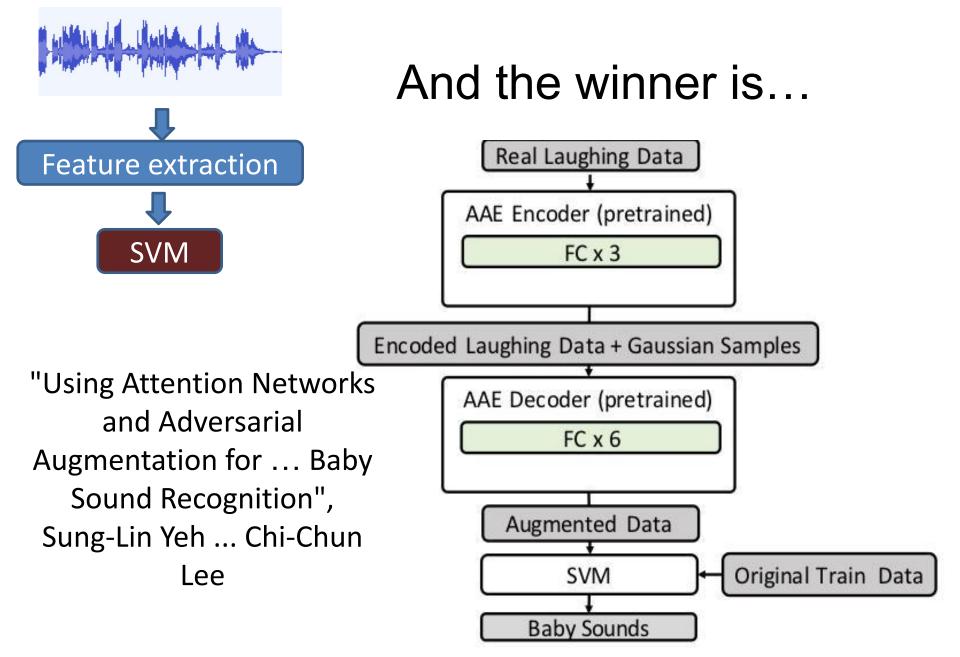
reflexive vocalizations


```
<u>non-canonical babbling</u>
(55")
```









Talker diarization (who speaks when) DIHARD 2018, 2019 Interspeech

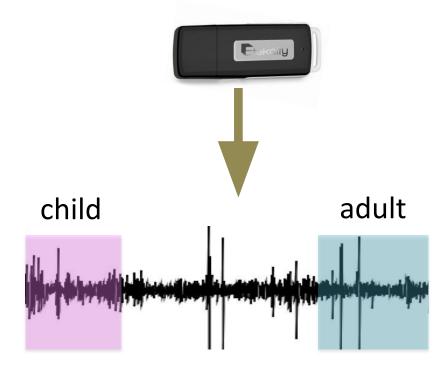
Addressee classification (whom are they talking to) ComParE 2017 Interspeech

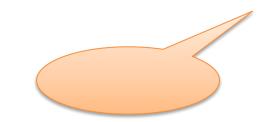
Child vocalization types (babbling, crying, ...)

ComParE 2019 Interspeech

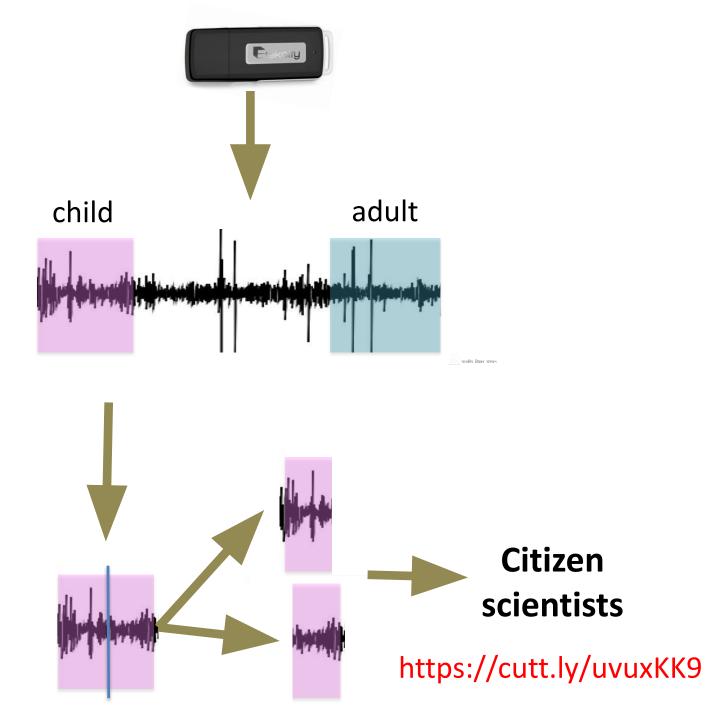
Shamelessly stolen from Y. LeCun

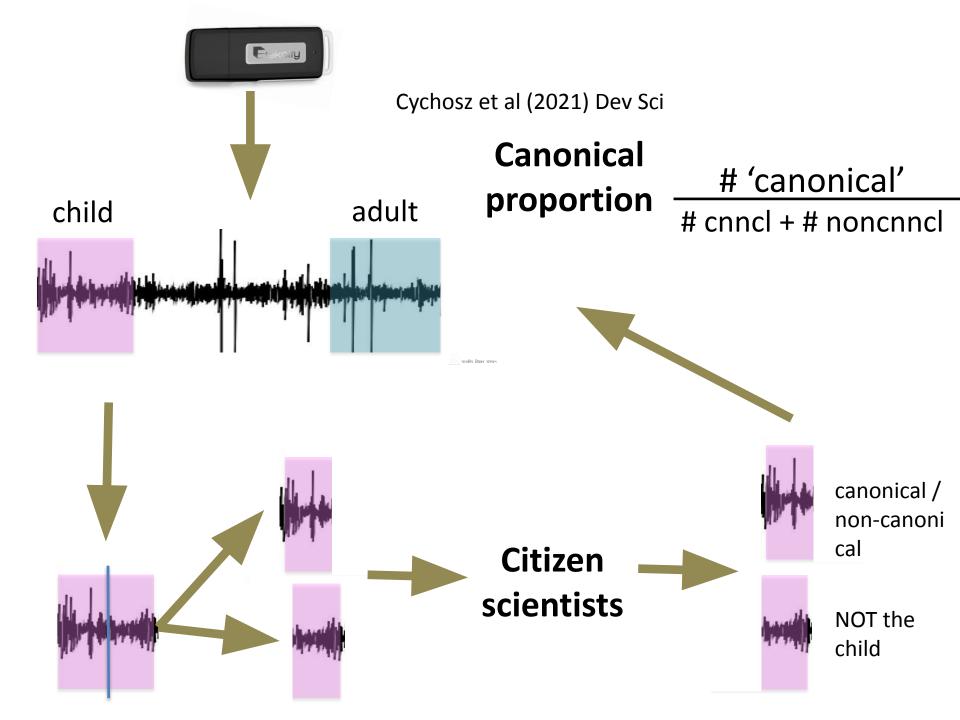
more work exploiting unsupervised, semi-supervised, and self-supervised classification

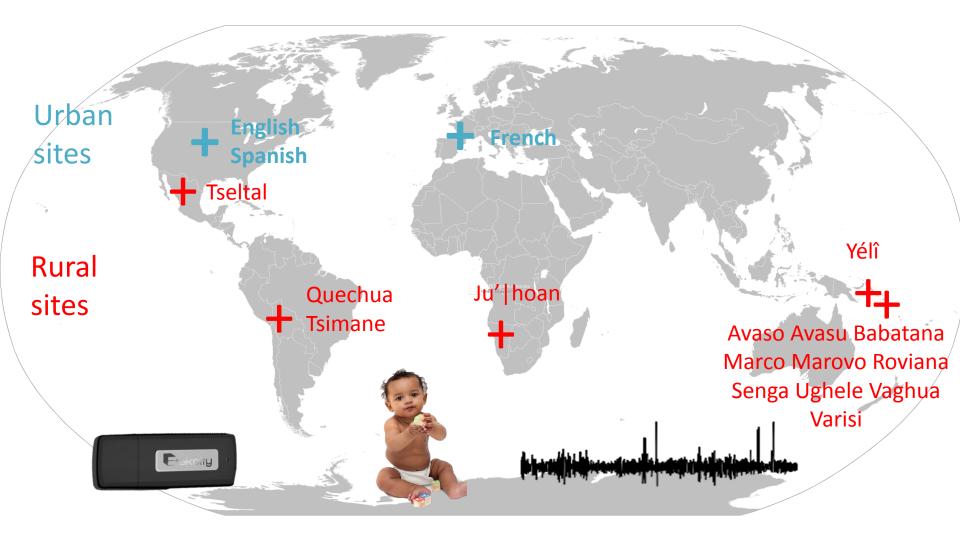




Long-form audio recordings + citizen scientists to the rescue!

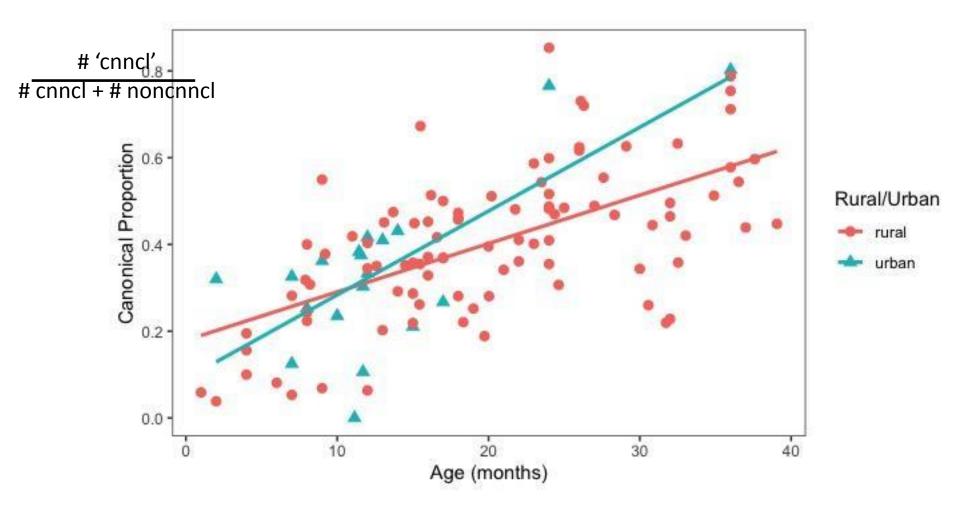


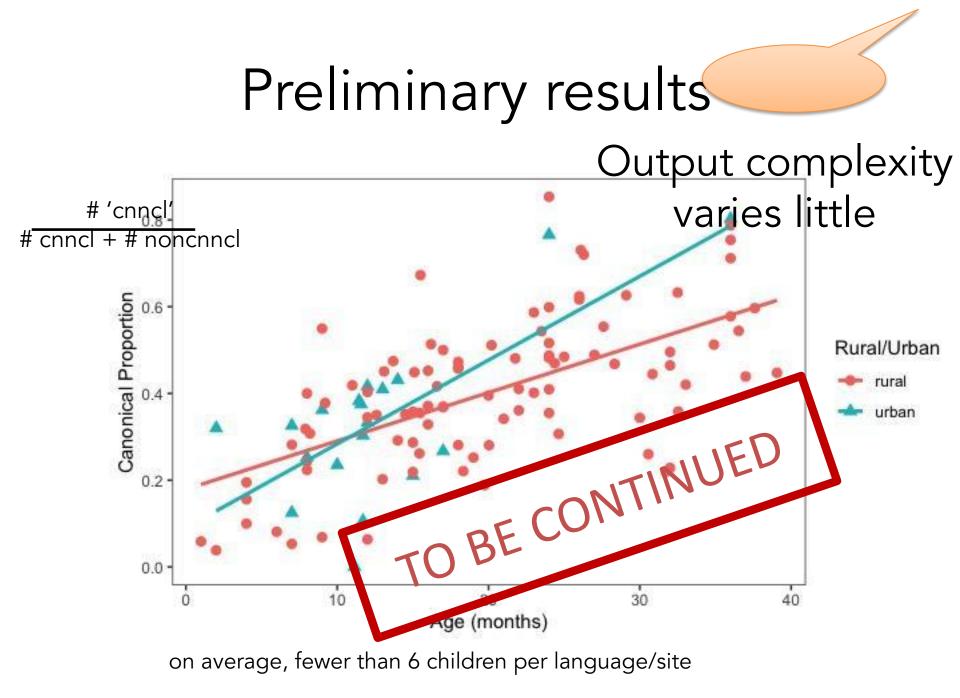




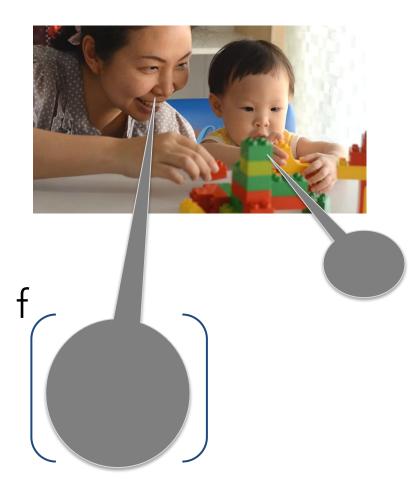
19 children learning English, Spanish, or French in urban locations 95 learning one of 19 other languages in rural sites

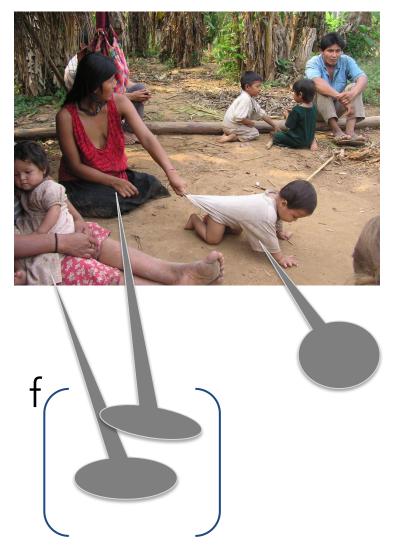
Preliminary results





Assuming results hold, our broad language acquisition theory (v 2.1)

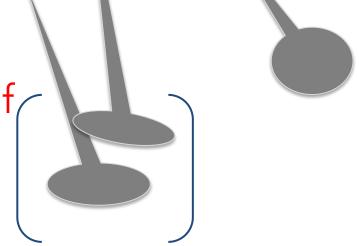




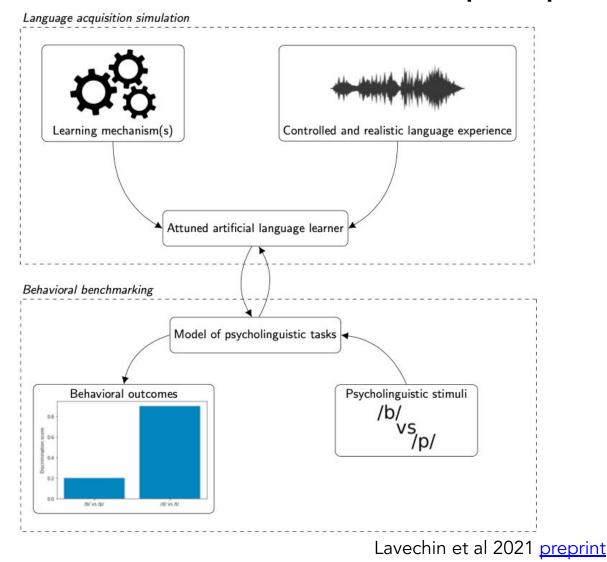
Assuming results hold, our broad language acquisition theory (v 2.1)

Assuming results hold, our broad language acquisition theory (v 2.1)

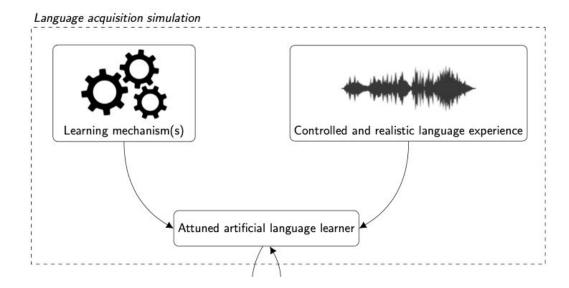
Next step: Learnability properties



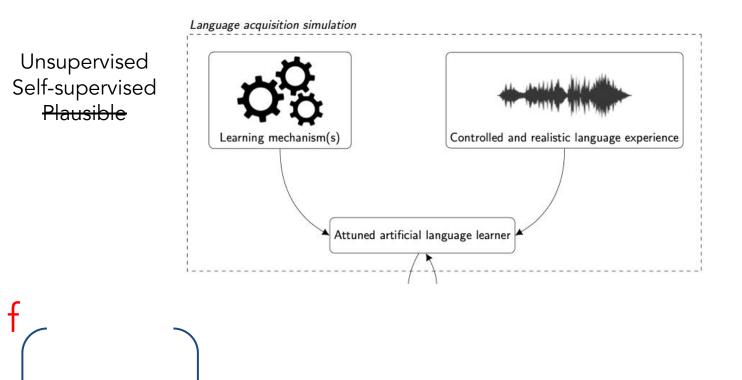
Reverse-engineering language acquisition: Our current proposal



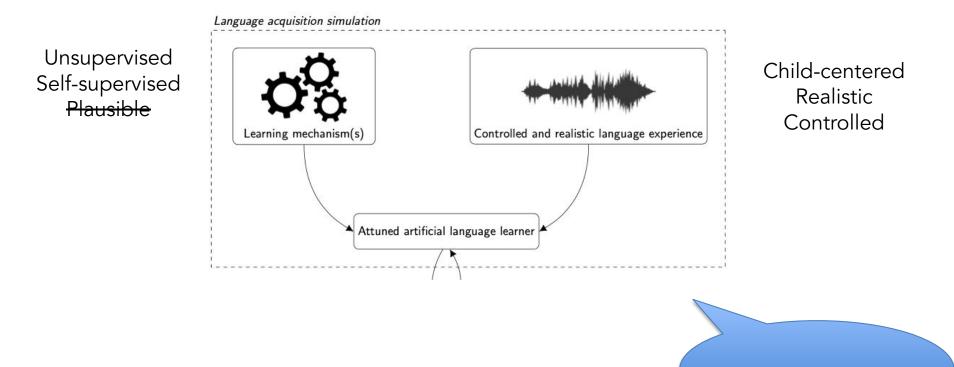
Simulating language acquisition



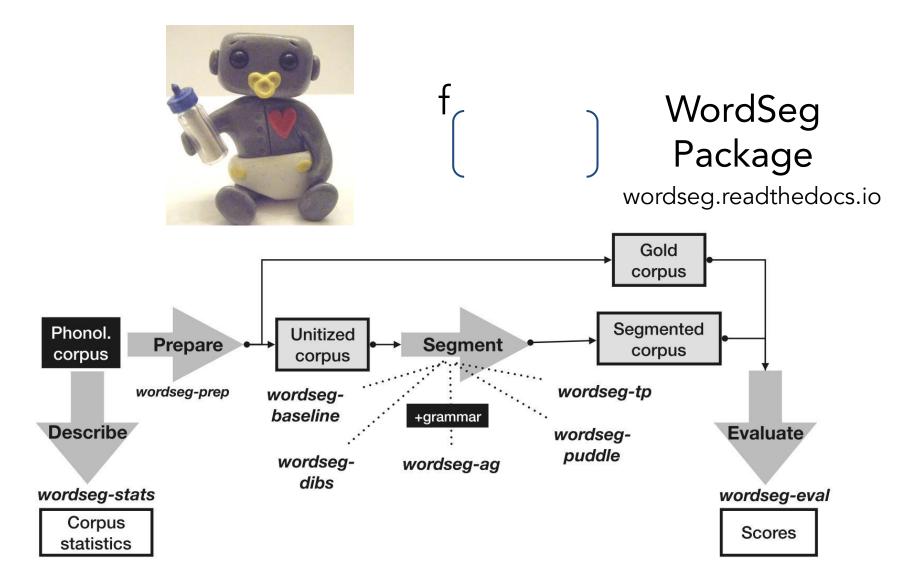
Desiderata for the function



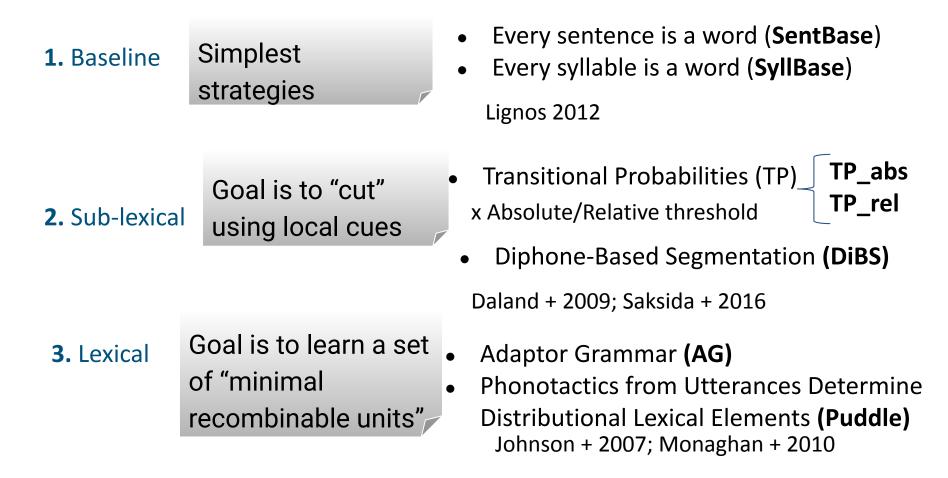
Desiderata for the input



Studying learnability properties: eg Unsupervised word segmentation

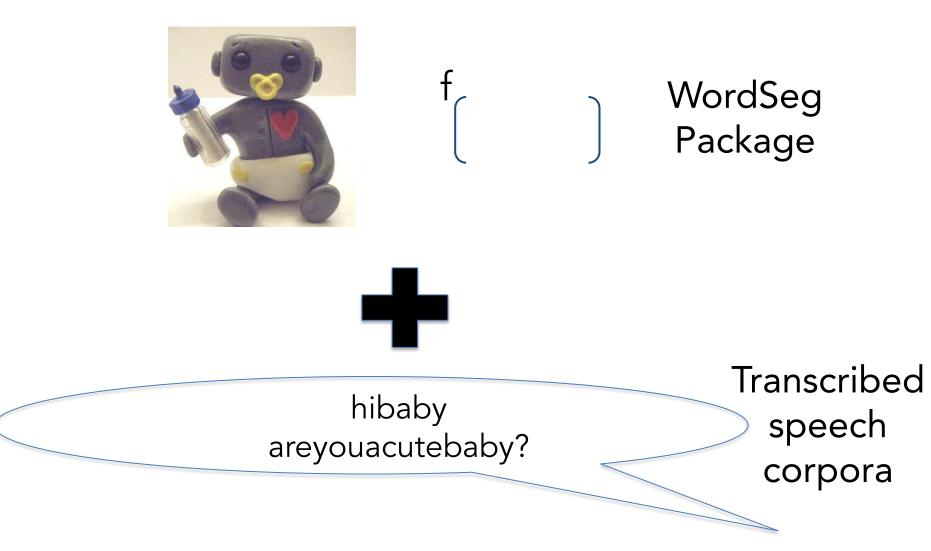


Example algorithms



Bernard et al. 2019 Beh Res Meth (preprint)

Studying learnability properties: Unsupervised word segmentation



English may not be the best language to study learnability on...

English (and other contact/imperial languages)

Finish it, I'll be here!

He's dressed.

English may not be the best language to study learnability on...

English (and other contact/imperial languages)

Inuktitut

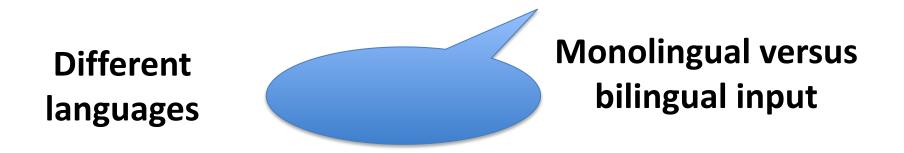
Finish it, I'll be here! = Nungullugungai, taavanilangajualusunga!

He's dressed. = Annuraqsimajualuuman.

Creating bilingual corpora

	CHILDES nat Matched in sex a				L2 L	2 L2
	Phone English	o <i>logizatioi</i> Spanish	1 Catalan			1
	Orthography ch Pronunciation f Matched phonology T	ch tf T	ch ts X	1		
<u> </u>	L1 Con	catenation	L2	L2	2 L2	+
		le" he	1			L2
Monolingual L		ilingual L1 - 50% L2		Mono	lingual L	2

Factors we manipulated



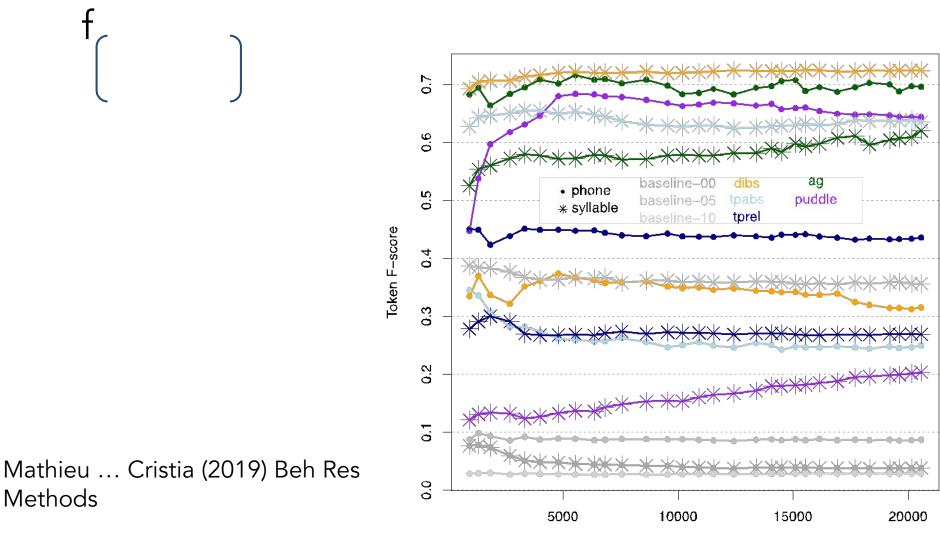
Which factor had the biggest impact on performance? Guess in chat!

Different processing algorithms

LANG Different languages

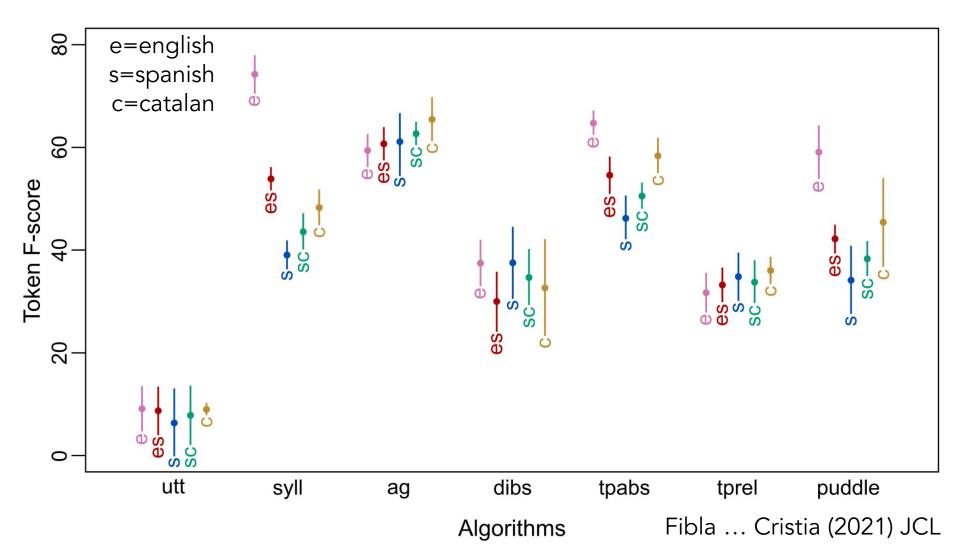
MONO Monolingual versus bilingual input

Differences between learning algorithms are enormous (40-60%)

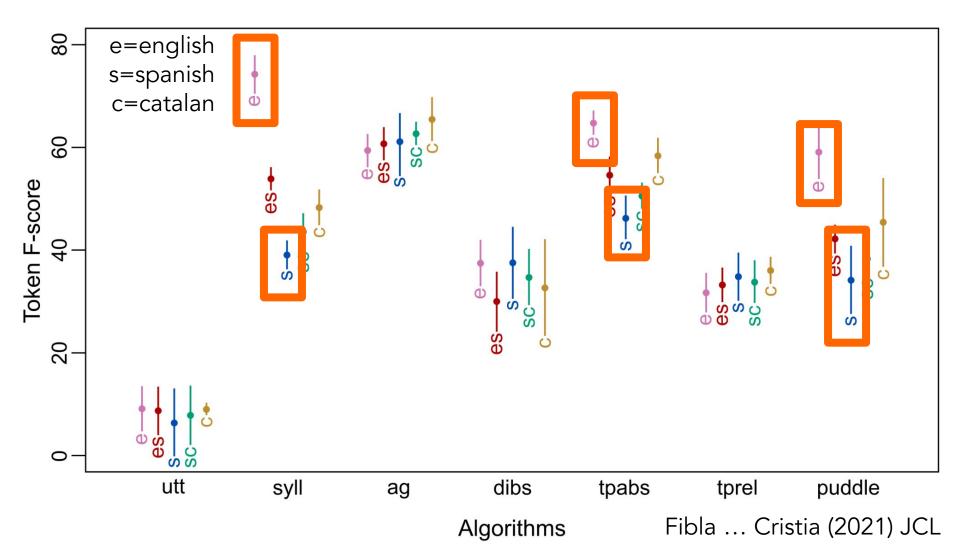


N word tokens

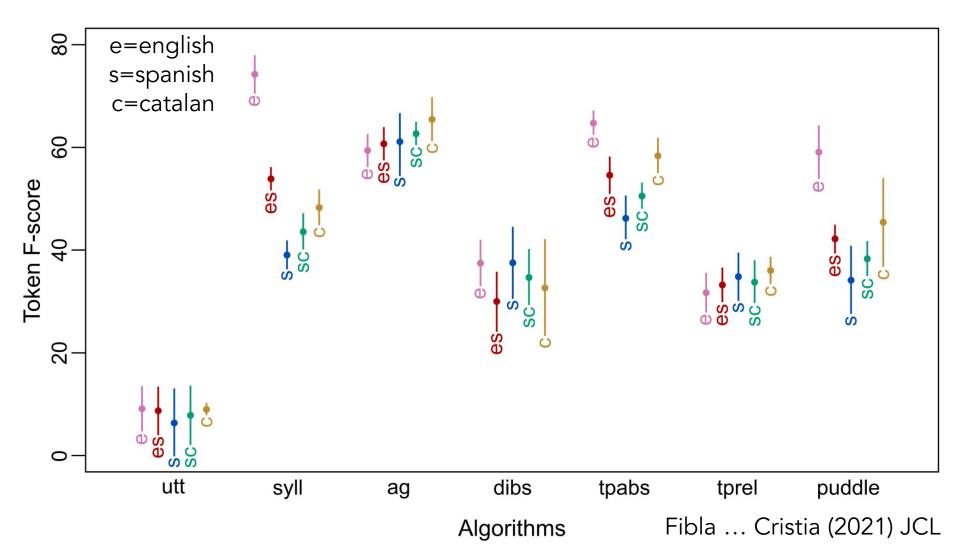
Differences bet/ languages? Monolingual advantage?

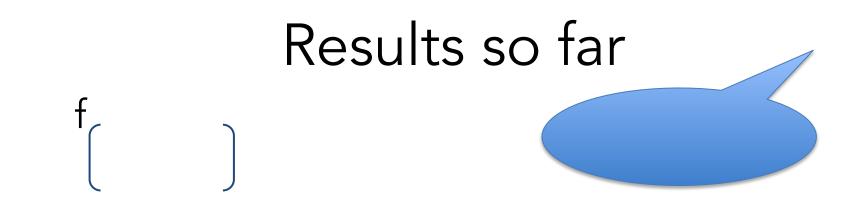


Smaller differences bet/ languages



Smaller differences bet/ languages No clear monolingual advantage



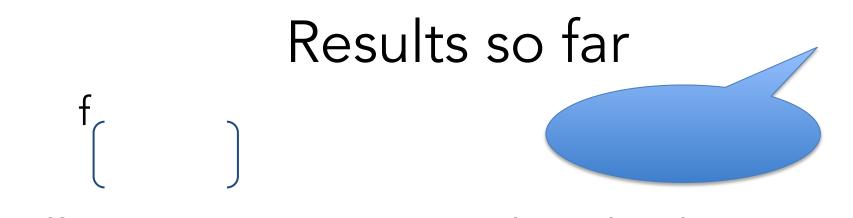


Differences between learning algorithms areenormous (40-60%)

> than that between languages as a function of languages by morphological type (20%)

- Monolingual versus bilingual input (<5%)

Mathieu ... Cristia (2019) Beh Res Methods Loukatou ... Cristia (2019) ACL Fibla ... Cristia (2021) JCL



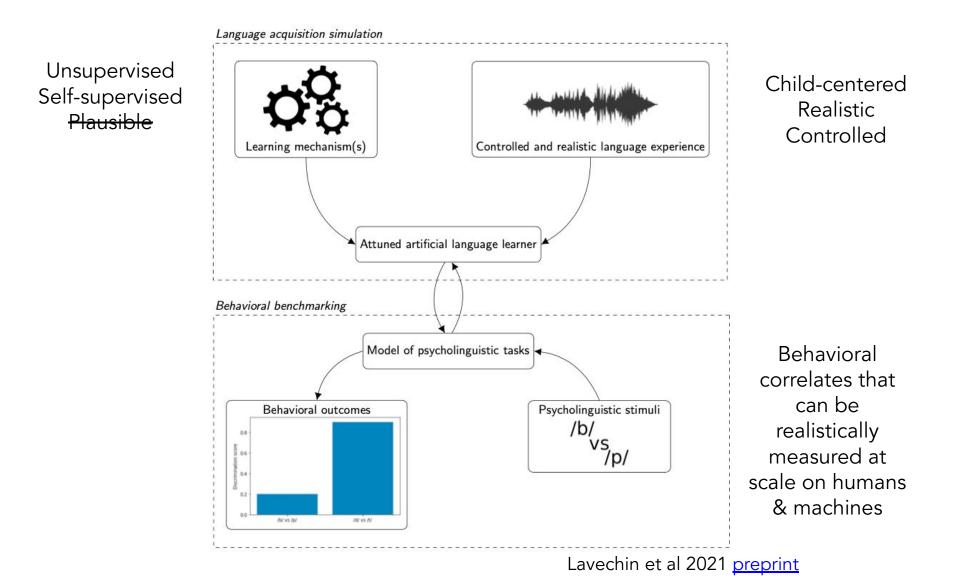
> than that between Differences between languages as a function of earning algorithms are anguages by morphological enormous (40-60%) TO BE CONTINUED type (20%)

Monolingual versus bilingual input (<5%)

Cristia (2019) Beh Res NEEDED: athieu Loukatou ... Cristia (2019) ACL Fibla ... Cristia (2021) JCL lods - learnability on other levels;

- real infant evidence

Behavioral benchmarking

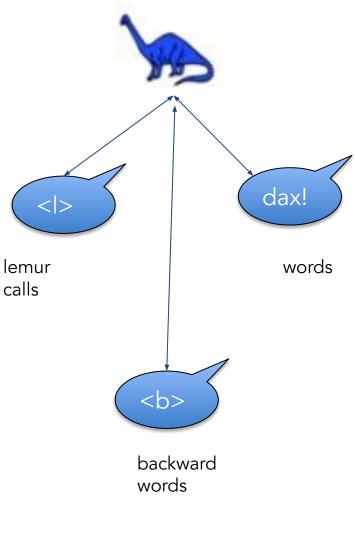


Example: categorization task with words

Perszyk & Waxman 2017 JOVE

Behavioral correlates in humans & machines

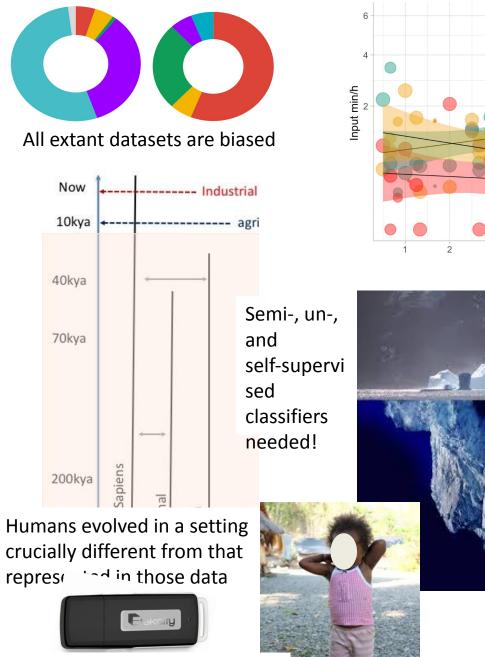
Sound only behaviors	Age (mo)	Task	Dataset
discriminate across rhythmically distinct languages	0	distance-based	bilingual set of stimuli
discriminate across rhythmically similar languages only if exposed to one of them	0	distance-based	bilingual set of stimuli
discriminate native and non-native consonants	6-8	distance-based	phonetically aligned clean speech
accept novel content words more easily than novel function words	6	probability-based	jabberwocky sentences
prefer native over non-native phonotactics	9	probability-based	made-up words varying in phonotactics
prefer high over low phonotactics	9	probability-based	made-up words varying in phonotactics
prefer high over low frequency content words	11	probability-based	real words varying in frequency
do not discriminate non-native consonants	12	distance-based	phonetically aligned clean speech
Cross-modal behaviors	Age (mo)	Task	Dataset
treat words and monkey calls, but not beeps or coughs, as possible labels	3	few-shot learning + distance-based	images paired with words, monkey calls, beeps or
treat words but not monkey calls as possible labels	6	few-shot learning + distance-based	images paired with words or monkey calls
treat content but not function words as possible labels	6	few-shot learning + distance-based	images paired with function words or content words
few-shot learning of new word-object pairings	9	few-shot learning + distance-based	images paired with words
treat words with native but not non-native sounds as possible labels	10	few-shot learning + distance-based	images paired with L1 words and L2 words



Lavechin et al 2021 preprint

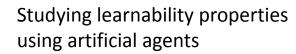
An interdisciplinary endeavor

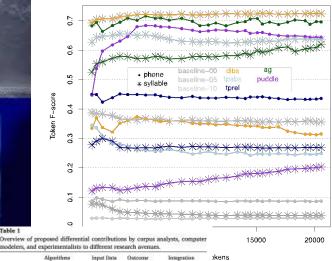
	Algorithms	Input Data	Outcome measures	Integration	
Corpus Analysis		Estimate prevalence of the various referential and event types	Measures of language output maturity	Explanations of	
Computer Modeling	Implementation of probabilistic models, learning and preprocessing algorithms	Estimate of outcomes as a function of prevalence of referential/event types in the input for each combination of algorithm and preprocessing		outcome/input relationships in infants across cultures Predictions of	
Experimental Studies	Proof-of-concept of preprocessing and learning algorithms		Measure of tacit knowledge (probabilistic models of infants)	outcomes of interventions	



Naturalistic, massive datasets of child language...







Explanations

of outcome.

in infant across

Predictions of

outcomes of

	R	A	measures	
ysis		Estimate prevalence of the various referential and event types	Measures of language output maturity	
ter Hing	Implementation of probabilistic models, burning and preprocessing algorithms	Estimate of outcomes as a function of prevalence of referential/event types in the input for each combination of algorithm and preprocessing		
nental es	Proof-of-concept of preprocessing and learning algorithms		Measure of tacit knowledge (probabilistic models of infants)	

3

Age ir

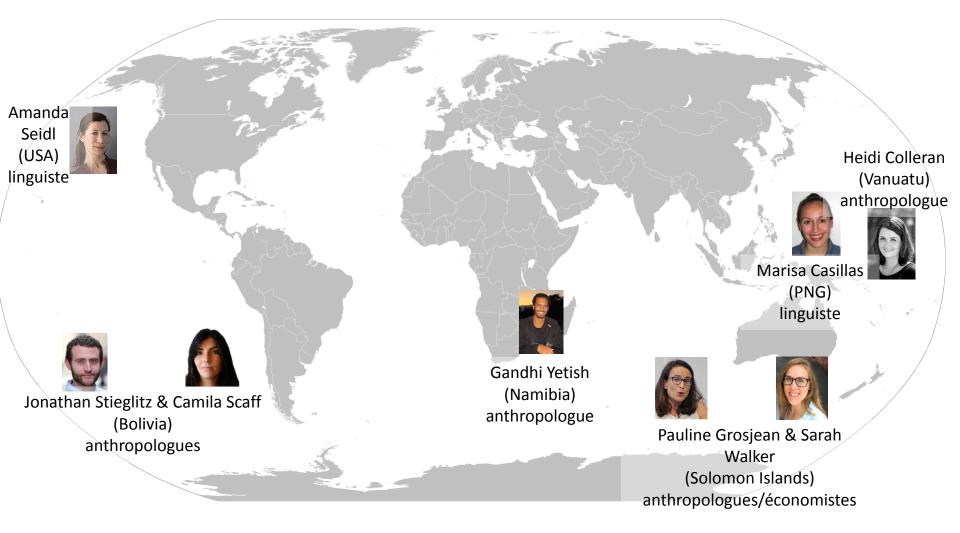
Согрия

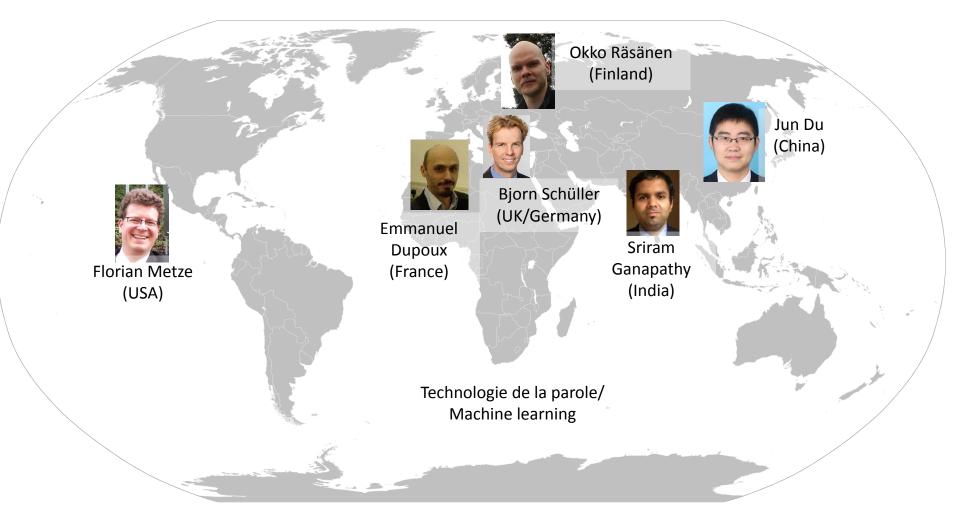
Compu

Mode

Analy

Solving this puzzle requires interdisciplinary research If you want to go fast, go alone. If you want to go far, go together





Affiliated researchers

Camila Scaff (PhD Cog Sci) U Zurich

Sho Tsuji (PhD Cog Sci) U Tokyo

Alex Cristia (PhD Linguistics)

Marvin Lavechin Machine learning **PhD student** (CIFR Facebook Artificial Intelligence Research)

Interns (summer 2021):

- Marina Drobi (Cogmaster, PMI)
- Chloé Magnier & Cédric Dubreil (SLP)
- Ninoh Da Silva (Linguistic informatics)
- Martin Frébourg (speech tech intern)

We'll be hiring! (2021-2023) see exelang.fr for more info

Kasia Hitczenko (PhD Linguistics)

William Havard (PhD NLP)

Tech personnel

Lucas Gautheron M1 Physics Data Manager

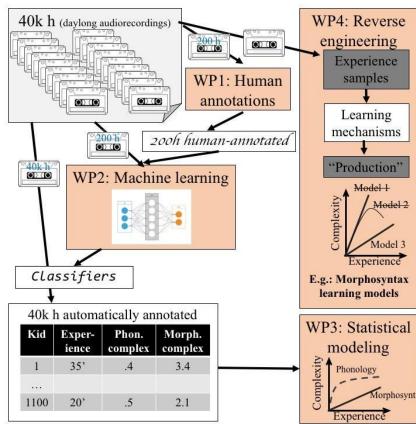
Sara Pisani M1 Cultural Industries Data donor advisor

Shared with Cognitive Machine Learning (CoML, INRIA)

Xuan Nga Cao (PhD Linguistics) Research Engineer

Catherine Urban Admin Magician

ExELang.fr: Experience Effects on Language



New <u>approach</u>: *Developing unsupervised language-learning models to reverse-engineer human learning*

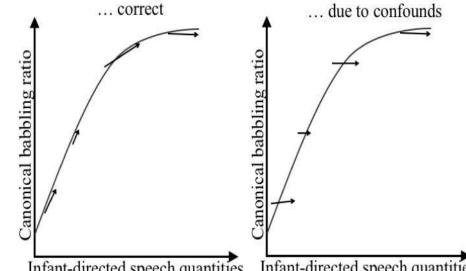
European Research Council Established by the European Commission

ExELang.fr: Experience Effects on Language

experience-outcome relationship found in individual variation analyses was...

New <u>data sets</u>: "micro-grants" **Re-using data from** randomized control trials

Established by the European Commission



Infant-directed speech quantities Infant-directed speech quantities

A potential result of predicting pre-post-intervention changes in the Randomized Control Trials' corpora. Each arrow represents data from one Randomized Control *Trial (beginning of the arrow = "pre-intervention" quantities, tip =post-intervention quantities).*

Thanks to: Participating families Participating villages

Team, collaborators & colleagues Funding agencies

And you.

James S. McDonnell Foundation

Documentation on the systematic review xcult.shinyapps.io/vocsr/

Annotation tools

PRO,

- PROJEC

NDED BY THE

sites.google.com/view/aclewdid (Annotations & Tools tabs)

Sample daylong recording https://github.com/LAAC-LSCP/vandam-daylong-demo

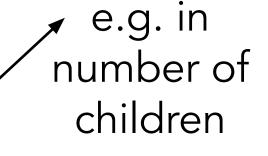
> Zooniverse project (complete!) https://cutt.ly/uvuxKK9

ExELang project https://exelang.fr

Child-rearing among hunter-gatherer communities

- Universal
- Co-sleeping & physical contact
- Maternal primacy <1y
- Multi-age groups >1y
- Frequent breast-feeding
- Variation
- Non-maternal care
- Self-provisioning
- Assigned chores
- Father involvement
- Weaning age/ inter-birth interval duration

Variation in reproductive strategies



Konner 2016

Hewlett et al. 2000

The noisy reality of infant studies

