
off-policy deep RL
Remi Munos

Paris

Remi Munos DeepMind

How to do fundamental research in deep RL?
Ingredients of a satisfying research:

1- The need
● Observe limitation of current approaches
● Identify the core problem

2- The idea
● Design an algorithm

3- The benefit
● Theoretical analysis in simplified setting
● Improved numerical performance

Remi Munos DeepMind

Off-policy deep RL

● The need
○ Limitations of DQN and A3C
○ off-policy, multi-steps RL

● The idea:
○ Truncated importance sampling while preserving contraction property
○ The algorithm: Retrace

● The benefit:
○ Convergence to optimal policy in finite state spaces
○ Practical algorithms (ACER, Reactor, MPO, Impala)

Remi Munos DeepMind

Remi Munos DeepMind

Remi Munos DeepMind

Remi Munos DeepMind

Remi Munos DeepMind

Remi Munos DeepMind

Remi Munos DeepMind

Remi Munos DeepMind

Remi Munos DeepMind

Remi Munos DeepMind

Remi Munos DeepMind

Two desired properties of a RL algorithm:

● Off-policy learning
○ use memory replay
○ do exploration
○ lag between acting and learning

● Use multi-steps learning
○ propagate rewards rapidly
○ avoid accumulation of approximation/estimation errors
○ Allow learning from sequences (RNN)

Ex: Q-learning (and DQN) is off-policy but does not use multi-steps returns
Policy gradient (and A3C) use returns but are on-policy.

Both properties are important in deepRL. Can we have both simultaneously?

Remi Munos DeepMind

Off-policy reinforcement learning

Behavior policy , target policy

Observe trajectory

 where , and

Goal:
● Policy evaluation:

● Optimal control:

Remi Munos DeepMind

Off-policy credit assignment problem
Behavior policy
 Target policy

Can we use the TD to estimate for all ?

Remi Munos DeepMind

Importance sampling

Reweight the trace by the product of IS ratios

Remi Munos DeepMind

Importance sampling

Unbiased estimate of

Remi Munos DeepMind

Importance sampling

Unbiased estimate of
Large (possibly infinite) variance Not stable!
[Precup, Sutton, Singh, 2000], [Mahmood, Yu, White, Sutton, 2015] ,...

Remi Munos DeepMind

algorithm
[Harutyunyan et al., 2016]

Cut traces by a constant

Remi Munos DeepMind

algorithm
[Harutyunyan et al., 2016]

 works if

Remi Munos DeepMind

algorithm
[Harutyunyan et al., 2016]

 works if

 may not work otherwise No guarantee!

Remi Munos DeepMind

Tree backup TB(λ) algorithm
[Precup, Sutton, Singh, 2000]

 Reweight the traces by the product of target probabilities

Remi Munos DeepMind

works for arbitrary policies and

Tree backup TB(λ) algorithm
[Precup, Sutton, Singh, 2000]

Remi Munos DeepMind

works for arbitrary policies and

cut traces unnecessarily when on-policy Not efficient!

Tree backup TB(λ) algorithm
[Precup, Sutton, Singh, 2000]

Remi Munos DeepMind

General off-policy return-based algorithm:

 Algorithm: Trace coefficient: Problem:

 IS high variance

 No guarantee

 not efficient

Remi Munos DeepMind

Off-policy policy evaluation:

Theorem 1: Assume finite state space. Generate trajectories according to
behavior policy . Update all states along trajectories according to:

Assume all states visited infinitely often. Under usual SA assumptions,

 If then a.s.

Sufficient conditions for a safe algorithm (works for any and)

Remi Munos DeepMind

Off-policy return-based operator

Lemma:
Assume the traces satisfy .

Then the off-policy return-based operator:

is a contraction mapping (whatever and) and is its fixed point.

Remi Munos DeepMind

Proof [part 1]

Thus

which is a linear combination weighted by non-negative coefficients which sum to...

Remi Munos DeepMind

Proof [part 2]

Sum of the coeff.

Thus

Remi Munos DeepMind

Tradeoff for trace coefficients

● Contraction coefficient of the expected operator

 when (one-step Bellman update)
 when (full Monte-Carlo rollouts)

● Variance of the estimate (can be infinite for)

Large uses multi-steps returns, but large variance
Small low variance, but do not use multi-steps returns

Remi Munos DeepMind

Retrace(λ)
[Munos et al., 2016]

 Our recommendation:

Properties:
● Low variance since

● Safe (off policy): cut the traces when needed

● Efficient (on policy): but only when needed. Note that

Remi Munos DeepMind

Summary

 Algorithm: Trace coefficient: Problem:

 IS high variance

 not safe (off-policy)

 not efficient (on-policy)

none!

Remi Munos DeepMind

Retrace(λ) for optimal control

Let and sequences of behavior and target policies and

Theorem 2
Under previous assumptions (+ a technical assumption)
Assume are “increasingly greedy” wrt
Then, a.s.,

Remi Munos DeepMind

Remarks

● If are greedy policies, then
→ Convergence of Watkin’s Q(λ) to

(open problem since 1989)

● “Increasingly greedy” allows for smoother traces thus faster convergence

● The behavior policies do not need to become greedy wrt
→ no GLIE assumption (Greedy in the limit with infinite exploration)

(first return-based algo converging to without GLIE)

Remi Munos DeepMind

Theoretical guarantees of Retrace

Under assumption of finite-state space:
● Convergence to optimal policy
● Cut traces when -and only when- needed
● Adjust the length of the backup to the “off-policy-ness” of the data

Should be useful in deep RL since it allows memory-replay, exploration,
distributed acting, and learn from sequences.

Now, does in work in practice?

Remi Munos DeepMind

Retrace for deepRL
 Several actor-critic architectures at DeepMind:

● ACER (Actor-Critic for Experience Replay) [Wang et al., 2017]. Policy
gradient. Works for continuous actions.

● Reactor (Retrace-actor) [Gruesly et al., 2018]. Use beta-LOO to update
policy. Use LSTM.

● MPO (Maximum a posteriori Policy Optimization) [Abdolmaleki et al., 2018]
Soft (KL-regularized) policy improvement.

● IMPALA (IMPortance Weighted Actor-Learner Architecture) [Espeholt et
al., 2018]. Heavily distributed agent. Uses V-trace.

Research Engineering

Reactor [Gruesly et al., 2018]

Observation

Q(x, a)

π(x, a)µ(x, a)

Recurrent
Network

optimize

evaluate

Experience
replay

predict

sample

correct
^

Remi Munos DeepMind

Reactor performances on Atari

Remi Munos DeepMind

Reactor performances on Atari

Remi Munos DeepMind

Control suite with MPO

MPO (Maximum a posteriori
Policy Optimization)

[Abdolmaleki et al., 2018]

on the DeepMind control suite

(set of continuous control tasks intended to serve
as performance benchmarks for RL agents)

See: https://www.youtube.com/watch?v=he_BPw32PwU

http://www.youtube.com/watch?v=he_BPw32PwU

Remi Munos DeepMind

IMPALA [Espeholt et al., 2018]

IMPortance Weighted Actor-Learner Architecture
● Heavily distributed architecture
● Many actors (CPU),
● one (or more) learner (GPU)

● Actors generate trajectories
and place them into a queue.

● Learner dequeues and performs
parameter updates.

Stale experience
→ requires off-policy learning: V-trace

Actor Actor

V-Trace
Advantage
Actor-Critic

Learner

Parameters
Observations

Actor

Actor Actor

Actor

V-trace: off-policy algorithm using V-values

V-trace = Modified version of Retrace where we learn V instead of Q
● The V-Trace corrected estimate for the value V(xs) is:

● where and .

● Converges to

● The V-Trace update for the value function is:

● The V-Trace update for the policy is:

Impala Architectures

Small CNN-LSTM

Deep ResNet CNN-LSTM

DMLab-30 Task Set

● Set of 30 cognitive tasks in DeepMind Lab 3D environment.

● Many of the tasks are procedurally generated.

Grounded Language Memory Outdoor Foraging Navigation

DMLab-30 Task Set

Individual task:
An agent trained per
task

Multi-tasks:
A single agent trained
on all tasks
simultaneously

Performance of Impala on DMLab-30

● IMPALA outperforms A3C (10x more data efficient, 2x overall final performance)

● Positive transfer in multi-task training

IMPALA Videos - Mushroom foraging task

Mushroom foraging task. The agent must collect mushrooms within a naturalistic terrain environment to
maximise score. The mushrooms do not regrow. The map is randomly generated. The spawn location is
randomized for each episode. Foraging task

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

http://www.youtube.com/watch?v=q081qM7gGj8

IMPALA Videos - Select Located Object task

The agent is asked to collect a specified coloured object in a specified coloured room. Example: “Pick the
red object in the blue room.” Language task

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

http://www.youtube.com/watch?v=Ko7f9hnX5es

IMPALA Videos - Object Locations

The agent must collect as many apples as possible before the episode ends to maximise their score.
Upon collecting all of the apples, the level will reset, repeating until the episode ends. Apple
locations, level layout and theme are randomized per episode. Navigation task

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

http://www.youtube.com/watch?v=bSzIDiWa2uY

IMPALA Videos - Obstructed Goals

Agents are required to find the goal as fast as possible, but now with randomly opened and closed
doors. Navigation task

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

http://www.youtube.com/watch?v=nGddvGLvkbk

IMPALA Videos - Keys Doors Puzzle

A procedural planning puzzle. The agent must reach the goal object, located in a position that is
blocked by a series of coloured doors. Coloured keys can be used to open matching doors once.
Collecting keys in the wrong order can make the goal unreachable. Requires planning

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

http://www.youtube.com/watch?v=ZRD1vFbUdrE

IMPALA Videos - Select Non-matching Object

The agent must choose an object that is different from the one it has seen before. The agent is placed into
a first room containing an object and a teleport pad. Touching the pad teleports the agent to a second
room containing two objects, one of which matches the object in the previous room. Requires memory

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

http://www.youtube.com/watch?v=46hxLxkrLlk

IMPALA Videos - Watermaze

The agent must find a hidden platform which, when found, generates a reward. This is difficult to find the
first time, but in subsequent trials the agent should try to remember where it is and go straight back to this
place. Tests episodic memory and navigation ability. Requires episodic memory

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

http://www.youtube.com/watch?v=9XkGLVvY4yg

Remi Munos DeepMind

We need more fundamental research in deep RL!

DeepRL is a super exciting research topic.

We need new idea, new algorithms, new theories!

Please join the fun!

Remi Munos DeepMind

References (used in the slides):
● [Pontryagin, 1956] See: Optimal Processes of Regulation, 1960 for English version.
● [Bellman, 1957] Dynamic Programming
● [Sutton, 1988] Learning to predict by the methods of temporal differences
● [Watkins, 1989] Learning From Delayed Rewards
● [Precup, Sutton, Singh, 2000] Eligibility traces for off-policy policy evaluation
● [Mnih et al., 2015] Human Level Control Through Deep Reinforcement Learning
● [Mnih et al., 2016] Asynchronous Methods for Deep Reinforcement Learning
● [Mahmood, Yu, White, Sutton, 2015] Emphatic Temporal-Difference Learning
● [Harutyunyan et al., 2016] Q(λ) with Off-Policy Corrections
● [Munos et al., 2016] Safe and Efficient Off-Policy Reinforcement Learning
● [Wang et al., 2017] Sample Efficient Actor-Critic with Experience Replay
● [Gruesly et al., 2018] The Reactor: A fast and sample-efficient Actor-Critic agent for Reinforcement

Learning
● [Abdolmaleki et al., 2018] Maximum a Posteriori Policy Optimization
● [Espeholt et al., 2018] IMPortance Weighted Actor-Learner Architecture

