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How to do fundamental research in deep RL?
Ingredients of a satisfying research:

1- The need
● Observe limitation of current approaches
● Identify the core problem

2- The idea
● Design an algorithm

3- The benefit
● Theoretical analysis in simplified setting
● Improved numerical performance
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Off-policy deep RL

● The need
○ Limitations of DQN and A3C 
○ off-policy, multi-steps RL

● The idea: 
○ Truncated importance sampling while preserving contraction property
○ The algorithm: Retrace

● The benefit:
○ Convergence to optimal policy in finite state spaces
○ Practical algorithms (ACER, Reactor, MPO, Impala)
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Two desired properties of a RL algorithm:

● Off-policy learning
○ use memory replay
○ do exploration
○ lag between acting and learning

● Use multi-steps learning 
○ propagate rewards rapidly
○ avoid accumulation of approximation/estimation errors
○ Allow learning from sequences (RNN)

Ex: Q-learning (and DQN) is off-policy but does not use multi-steps returns
Policy gradient (and A3C) use returns but are on-policy.

Both properties are important in deepRL. Can we have both simultaneously?
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Off-policy reinforcement learning

Behavior policy             , target policy             

Observe trajectory

   where                            ,                            and 

Goal: 
● Policy evaluation:       

● Optimal control: 
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Off-policy credit assignment problem
Behavior policy           
    Target policy 

Can we use the TD       to estimate                      for all          ?  
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Importance sampling 

Reweight the trace by the product of IS ratios
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Importance sampling

Unbiased estimate of 
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Importance sampling

Unbiased estimate of 
Large (possibly infinite) variance Not stable! 
[Precup, Sutton, Singh, 2000], [Mahmood, Yu, White, Sutton, 2015] ,...
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algorithm 
[Harutyunyan et al., 2016]

Cut traces by a constant 
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algorithm
[Harutyunyan et al., 2016]

 works if
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algorithm
[Harutyunyan et al., 2016]

 works if

 may not work otherwise No guarantee!
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Tree backup TB(λ) algorithm
[Precup, Sutton, Singh, 2000]

    Reweight the traces by the product of target probabilities
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works for arbitrary policies      and 
  

Tree backup TB(λ) algorithm
[Precup, Sutton, Singh, 2000]
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works for arbitrary policies      and 
  

cut traces unnecessarily when on-policy Not efficient! 

Tree backup TB(λ) algorithm
[Precup, Sutton, Singh, 2000]
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General off-policy return-based algorithm:

  Algorithm: Trace coefficient:       Problem:

  IS  high variance

                   No guarantee

             not efficient
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Off-policy policy evaluation:

Theorem 1: Assume finite state space. Generate trajectories according to 
behavior policy     . Update all states along trajectories according to:

Assume all states visited infinitely often. Under usual SA assumptions,
    
                  If  then                        a.s.  

Sufficient conditions for a safe algorithm (works for any     and     )
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Off-policy return-based operator

Lemma: 
Assume the traces satisfy                             .

Then the off-policy return-based operator:

is a contraction mapping (whatever      and   ) and        is its fixed point.
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Proof [part 1]

 
Thus

which is a linear combination weighted by non-negative coefficients which sum to...
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Proof [part 2]

Sum of the coeff.

Thus  
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Tradeoff for trace coefficients  

● Contraction coefficient of the expected operator 

               when              (one-step Bellman update)
               when              (full Monte-Carlo rollouts)

● Variance of the estimate (can be infinite for                      )
 
Large        uses multi-steps returns, but large variance
Small        low variance, but do not use multi-steps returns 
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Retrace(λ)
[Munos et al., 2016]

      Our recommendation:

Properties:
● Low variance since  

● Safe (off policy): cut the traces when needed 

● Efficient (on policy): but only when needed. Note that
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Summary

  Algorithm: Trace coefficient:       Problem:

  IS  high variance

                   not safe (off-policy)

             not efficient (on-policy)

none!
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Retrace(λ) for optimal control

Let           and          sequences of behavior and target policies and  

Theorem 2
Under previous assumptions (+ a technical assumption)
Assume          are “increasingly greedy” wrt          
Then, a.s.,
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Remarks

● If          are greedy policies, then 
→ Convergence of Watkin’s Q(λ)  to

(open problem since 1989)

● “Increasingly greedy” allows for smoother traces thus faster convergence

● The behavior policies         do not need to become greedy wrt         
→ no GLIE assumption (Greedy in the limit with infinite exploration)

(first return-based algo converging to       without GLIE)



Remi Munos DeepMind

Theoretical guarantees of Retrace
 

Under assumption of finite-state space:
● Convergence to optimal policy
● Cut traces when -and only when- needed
● Adjust the length of the backup to the “off-policy-ness” of the data

Should be useful in deep RL since it allows memory-replay, exploration, 
distributed acting, and learn from sequences.

Now, does in work in practice?
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Retrace for deepRL
 Several actor-critic architectures at DeepMind:

● ACER (Actor-Critic for Experience Replay) [Wang et al., 2017]. Policy 
gradient. Works for continuous actions.

● Reactor (Retrace-actor) [Gruesly et al., 2018]. Use beta-LOO to update 
policy. Use LSTM.

● MPO (Maximum a posteriori Policy Optimization) [Abdolmaleki et al., 2018] 
Soft (KL-regularized) policy improvement.

● IMPALA (IMPortance Weighted Actor-Learner Architecture) [Espeholt et 
al., 2018]. Heavily distributed agent. Uses V-trace.



Research Engineering

Reactor [Gruesly et al., 2018]

Observation

Q(x, a)

π(x, a)µ(x, a)

Recurrent
Network

optimize

evaluate

Experience 
replay

predict

sample

correct
^
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Reactor performances on Atari
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Reactor performances on Atari
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Control suite with MPO
 

MPO (Maximum a posteriori 
Policy Optimization)

[Abdolmaleki et al., 2018]

on the DeepMind control suite

(set of continuous control tasks intended to serve 
as performance benchmarks for RL agents)

See: https://www.youtube.com/watch?v=he_BPw32PwU

http://www.youtube.com/watch?v=he_BPw32PwU
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IMPALA [Espeholt et al., 2018]
 

IMPortance Weighted Actor-Learner Architecture
● Heavily distributed architecture
● Many actors (CPU), 
● one (or more) learner (GPU)

● Actors generate trajectories 
and place them into a queue.

● Learner dequeues and performs 
parameter updates.

Stale experience 
→ requires off-policy learning: V-trace

Actor Actor

V-Trace 
Advantage
Actor-Critic

Learner

Parameters
Observations

Actor

Actor Actor

Actor



V-trace: off-policy algorithm using V-values

V-trace = Modified version of Retrace where we learn V instead of Q
● The V-Trace corrected estimate for the value V(xs ) is:

● where                                     and                                     .

● Converges to 

● The V-Trace update for the value function is:

● The V-Trace update for the policy is:



Impala Architectures

Small CNN-LSTM

Deep ResNet CNN-LSTM



DMLab-30 Task Set

● Set of 30 cognitive tasks in DeepMind Lab 3D environment.

● Many of the tasks are procedurally generated.

Grounded Language Memory Outdoor Foraging Navigation



DMLab-30 Task Set

Individual task:
An agent trained per 
task

Multi-tasks:
A single agent trained 
on all tasks 
simultaneously



Performance of Impala on DMLab-30

● IMPALA outperforms A3C (10x more data efficient, 2x overall final performance)

● Positive transfer in multi-task training



IMPALA Videos - Mushroom foraging task

Mushroom foraging task. The agent must collect mushrooms within a naturalistic terrain environment to 
maximise score. The mushrooms do not regrow. The map is randomly generated. The spawn location is 
randomized for each episode. Foraging task

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

http://www.youtube.com/watch?v=q081qM7gGj8


IMPALA Videos -  Select Located Object task

The agent is asked to collect a specified coloured object in a specified coloured room. Example: “Pick the 
red object in the blue room.” Language task

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

http://www.youtube.com/watch?v=Ko7f9hnX5es


IMPALA Videos - Object Locations

The agent must collect as many apples as possible before the episode ends to maximise their score. 
Upon collecting all of the apples, the level will reset, repeating until the episode ends. Apple 
locations, level layout and theme are randomized per episode. Navigation task

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

http://www.youtube.com/watch?v=bSzIDiWa2uY


IMPALA Videos - Obstructed Goals

Agents are required to find the goal as fast as possible, but now with randomly opened and closed 
doors. Navigation task

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

http://www.youtube.com/watch?v=nGddvGLvkbk


IMPALA Videos - Keys Doors Puzzle

A procedural planning puzzle. The agent must reach the goal object, located in a position that is 
blocked by a series of coloured doors. Coloured keys can be used to open matching doors once. 
Collecting keys in the wrong order can make the goal unreachable. Requires planning

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

http://www.youtube.com/watch?v=ZRD1vFbUdrE


IMPALA Videos - Select Non-matching Object

The agent must choose an object that is different from the one it has seen before. The agent is placed into 
a first room containing an object and a teleport pad. Touching the pad teleports the agent to a second 
room containing two objects, one of which matches the object in the previous room. Requires memory

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

http://www.youtube.com/watch?v=46hxLxkrLlk


IMPALA Videos - Watermaze

The agent must find a hidden platform which, when found, generates a reward. This is difficult to find the 
first time, but in subsequent trials the agent should try to remember where it is and go straight back to this 
place. Tests episodic memory and navigation ability. Requires episodic memory

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

http://www.youtube.com/watch?v=9XkGLVvY4yg
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We need more fundamental research in deep RL!

DeepRL is a super exciting research topic. 

We need new idea, new algorithms, new theories!

Please join the fun! 
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● [Precup, Sutton, Singh, 2000] Eligibility traces for off-policy policy evaluation
● [Mnih et al., 2015] Human Level Control Through Deep Reinforcement Learning
● [Mnih et al., 2016] Asynchronous Methods for Deep Reinforcement Learning 
● [Mahmood, Yu, White, Sutton, 2015] Emphatic Temporal-Difference Learning
● [Harutyunyan et al., 2016] Q(λ) with Off-Policy Corrections
● [Munos et al., 2016] Safe and Efficient Off-Policy Reinforcement Learning
● [Wang et al., 2017] Sample Efficient Actor-Critic with Experience Replay
● [Gruesly et al., 2018] The Reactor: A fast and sample-efficient Actor-Critic agent for Reinforcement 

Learning 
● [Abdolmaleki et al., 2018] Maximum a Posteriori Policy Optimization
● [Espeholt et al., 2018] IMPortance Weighted Actor-Learner Architecture


