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How to do fundamental research in deep RL?

Ingredients of a satisfying research:

1- The need
e Observe limitation of current approaches
e Identify the core problem

2- The idea
e Design an algorithm

3- The benefit
e Theoretical analysis in simplified setting
e Improved numerical performance
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Off-policy deep RL

e The need
o Limitations of DQN and A3C
o off-policy, multi-steps RL

e The idea:

o Truncated importance sampling while preserving contraction property
o The algorithm: Retrace

e The benefit:
o Convergence to optimal policy in finite state spaces
o Practical algorithms (ACER, Reactor, MPO, Impala)
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Introduction to Reinforcement Learning (RL)

» Learn to make good decisions

» No supervision. Learn from rewards

| learned to ride with RL™

Two approaches:
» Value based ([Bellman, 1957]'s dynamic programming)
» Policy based ([Pontryagin, 1956]'s maximum principle)
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The RL agent in its environment

action Qy ~ T |CCt)

$
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Bellman’s dynamic programming

» Define the value function Q™ of a policy m(alx):

Q" (x,a) = E[nytrt‘x, g 7r] ,

t>0

and the optimal value function:
Q*(x,a) = max Q™ (x, a).
s

(expected sum of future rewards if the agent plays optimally).
» Bellman equations:

Q" (x,8) = r(x,a) + 7B | > 7(a|¥)Q7(x, &)

a’

xd]

Q*(x,a) = r(x,a) + 1Ew [ max Q*(x', )

xd

» Optimal policy m*(x) = arg max, Q*(x, a)
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Represent Q using a neural network

» Represent value function Q(x, a) with a neural net.

» How to train Qu(x,a)? We don't have supervised values. We
only know we want

Qw(x,a) = r(x,a) + YEy [ma,\x Quw (X', a)|x, a]

» After a transition x;, ar — X¢41,

train Qu (x¢, a;) to predict ry + v max Qu (x¢41,a)
a

N -
N

target values

2
» Minimize loss (rt + v max Q(st+1,a) — Q(st, at)) .
a

A -

temporal (ﬁﬂ’erence St
» At the end of learning, E[§;] = 0.
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Deep Q-Networks (DQN) [Mnih et al. 2013, 2015]

Problems: (1) data is not iid, (2) target values change
Idea: be as close as possible to supervised learning

1. Dissociate acting from learning:

» Interact with the environments by following behavior policy
» Store transition samples x;, ar, X;+1, rr into a memory replay
» Train by replaying iid from memory

2. Use target network fixed for a while

2
loss = (e + 7 MaxX Quipe (Xe41,2) — Qu(xe, a2))

Properties: DQN is off-policy, and uses 1-step bootstrapping.
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DQN network
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DQN Results in Atari
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Pontryagin's maximum principle

» Parametrized policy mg(alx)

» Policy gradient: optimize

50 = B[ S ~ malc)]

>0

by gradient ascent:

VJ(0) = E[Z’th |°g7re(at|xt)([t + Yre+1 + . J)]
t=0 Qwaz),(t,at)

Actor-critic algorithm learn both 7y and Q.
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Asynchronous Advantage Actor-Critic (A3C)

A3C [Mnih et al., 2016] is an asynchronous actor-critic algorithm

» Learn state-value function V7 (x) = E[tho ~vEre|x, 7r] by
minimizing a n-step Temporal Difference:

2
(Vw(xt) — ([t + Yre1 + e Y 1 + Wan(Xt+n2))

n—steps target value

» Policy mg(at|x:) improved by following gradient ascent:

V log mg(at|xt) (rt Fen T T Tl g Gyt Vi (Xt4n) — Vw(xt))

Properties: On-policy algorithm, uses multi-steps learning.
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DQN versus A3C

DQN:

» Pros: Off-policy learning — use memory replay (sample
efficiency), allow any exploration strategy

» Cons: One-step learning: Slow to propagate information,
accumulates errors, no RNNs

A3C:

» Pros: Multi-steps learning — fast propagation of information,
possible use of RNNs

» Cons: On-policy learning: does not allow memory replay,
neither exploration

The Need: off-policy, multi-steps learning
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Two desired properties of a RL algorithm:

e Off-policy learning
o use memory replay
o do exploration
o lag between acting and learning
e Use multi-steps learning
o propagate rewards rapidly
o avoid accumulation of approximation/estimation errors
o Allow learning from sequences (RNN)

EX: Q-learning (and DQN) is off-policy but does not use multi-steps returns
Policy gradient (and A3C) use returns but are on-policy.

Both properties are important in deepRL. Can we have both simultaneously?
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Off-policy reinforcement learning
Behavior policy p(a|z), target policy 7 (a|z)
Observe trajectory {ajo =T,a0 = A, 70y Lt, At Tty . }

where a; ~ p(-|ze) , ry = r(xg,a) and Tep1 ~ p(-|xe, ar)

Goal:

e Policy evaluation: Q" (z,a) = ]E[Zytrt]ajo = x,a0 = a,w]
>0

e Optimal control: Q*(z,a) = max Q" (z,a)
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Off-policy credit assignment problem

Behavior policy u(a|x)
Target policy 7(a|x) 5,

____________

T
Can we use the TD §; to estimate Q" (x5, as) forall s < ¢7?
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Importance sampling

____________

Reweight the trace by the product of IS ratios
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Importance sampling

____________

/ AQ(z,q) = yt( W(%'%))(St

X

é Unbiased estimate of Q)™
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Importance sampling

a

AQ(z. a) = ’yt( H 7T(as|33s))5t

1<s<t “(asm)

X

é Unbiased estimate of Q)™

Large (possibly infinite) variance Not stable!
[Precup, Sutton, Singh, 2000], [Mahmood, Yu, White, Sutton, 2015] ,...
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Q™ (A) algorithm

[Harutyunyan et al., 2016]

/ AQ(z,a) = (YN)'4,

Cut traces by a constant )\?
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Q™ (A) algorithm

[Harutyunyan et al., 2016]
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Q™ (A) algorithm

[Harutyunyan et al., 2016]

X

é works if || — p|l1 <

, may not work otherwise No guarantee!
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Tree backup TB(A) algorithm

[Precup, Sutton, Singh, 2000]

____________

/ AQ(z,a) = A || w(as]zs)de

1<s<t

Reweight the traces by the product of target probabilities

Remi Munos DeepMind



Tree backup TB(A) algorithm

[Precup, Sutton, Singh, 2000]

’ AQ(w,a) = A T wlasles)s,

v 1<s<t

& works for arbitrary policies ™ and W
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Tree backup TB(A) algorithm

[Precup, Sutton, Singh, 2000]

____________

@ Tt
/ T

a
AQ(z,a) = X' |[ w(as|zs)ds

X

1<s<t
é works for arbitrary policies ™ and W

cut traces unnecessarily when on-policy Not efficient!
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General off-policy return-based algorithm:

27 H Tt+7EﬁQ(fEt+1a) Q(x¢,at))

S

1<s<¢t

5
Algorithm: Trace coefficient: Problem:
m(as|zs)
IS Cs (a)z.) high variance
Q™ (M) Cs = A No guarantee

TB()\)

cs = Am(as|xs)

not efficient
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Off-policy policy evaluation:

Theorem 1: Assume finite state space. Generate trajectories according to
behavior policy p . Update all states along trajectories according to:

Qr+1(z,a) = Qk(z,a) + ak Z’Y (Tt + VErQr(Tt+1,) — Qk($t,Gt))
>0
Assume all states visited infinitely often. Under usual SA assumptions,

If 0<c, < m(as|zs) then Qk — QW a.s.

plas|es)

Sufficient conditions for a safe algorithm (works for any @ and 7 )
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Off-policy return-based operator

Lemma:

Assume the traces satisfy 0 < ¢, < m(as|zs)

,u(as|:cs)'
Then the off-policy return-based operator:
RQ(w,0) = Q(z,a) + Bu| 3 7' (er - c) (e + VERQ(3e41,7) — Qe ar)) |

t>0
is a contraction mapping (whatever p and w) and ()™ is its fixed point.
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Proof [part 1]

RQ(x,a) = Q(x,a +Eu[zv ) (1 + VERQ(141,7) = Qaz, ar))
t>O
=K, [ZV ) (7t + V| ExQ(@e41, ) — ctr1Q (41, at+1)])}
Thus =
(RQ1 —RQ2)(@,0) = E, ;Wl ) (Ex(Q1 = Q) @es1,) — e11(Q1 = Q2) (@1, a41) )|
= Eu[ 200 3 (rlaloe) = plaloin o () @1 = Q)@ o)

which is a linear combination weighted by non-negative coefficients which sum to...
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Proof [part 2]

Sum of the coeff. = E, _th“(cl cer) Y (mlalwga) - u(a|xt+1)ct+1(a))}

“t>0 a

— ]E,u _Z’yH_l(Cl - Ct)(l — Ct—l—l)}

“t>0

= 7—(1 —’Y)Eu[zvt(cl"'cﬁ]

t>1

€ [0,9]

Thus |RQ1 — RQ2|l < 7Q1 — Q2]
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Tradeoff for trace coefficients cg

e Contraction coefficient of the expected operator

n:=7—1-7E, {ZVt(Cl - "Ct)] € [0,7]
t>1
n =7 when c; = 0 (one-step Bellman update)
n =0 when ¢, = 1 (full Monte-Carlo rollouts)

m(as|Ts)
p(as|zs)

e Variance of the estimate (can be infinite for ¢c; =

)

Large Cg uses multi-steps returns, but large variance
Small Cg low variance, but do not use multi-steps returns
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Retrace(A)
[Munos et al., 2016]

Our recommendation: |c; = A min (1, 7T(a3|$s))
p(as|zs)

Properties:
e Low variance since ¢, < 1

e Safe (off policy): cut the traces when needed ¢, ¢ [07 7T(as|37s)}
,M(Cba|$3)
e Efficient (on policy): but only when needed. Note that s > Am(as|zs)
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Summary

Algorithm: Trace coefficient: Problem:
m(as|xs) _ _
IS Cs = high variance
(as|zs) )
Q™ (N) Cs = A not safe (off-policy)
TB(\) cs = Am(as|Ts) not efficient (on-policy)
Retrace()\) cs = Amin (1, W(CLS'%)) none!

plas|zs)
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Retrace(A) for optimal control

Let (ug) and (7% ) sequences of behavior and target policies and
Tk as|xs)
Mk a3|333)

Qri1(w,0) = Qk(w,a)+ax Y _(M)" ][] min ( )(Tt+’Y]Eka(fEt+1, )= Qr(zt, ar))

t>0 1<s<t

Theorem 2
Under previous assumptions (+ a technical assumption)
Assume (7 ) are “increasingly greedy” wrt (Qx)

Then, a.s.,
Qr — QF
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Remarks

e |If (1) are greedy policies, then ¢; = Al{as € arg max Qr(xs,a)}

— Convergence of Watkin’s Q(A) to Q*
(open problem since 1989)

e ‘“Increasingly greedy” allows for smoother traces thus faster convergence
e The behavior policies (%) do not need to become greedy wrt (Q)

— no GLIE assumption (Greedy in the limit with infinite exploration)
(first return-based algo converging to ()* without GLIE)
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Theoretical guarantees of Retrace

Under assumption of finite-state space:
e Convergence to optimal policy
e Cut traces when -and only when- needed
e Adjust the length of the backup to the “off-policy-ness” of the data

Should be useful in deep RL since it allows memory-replay, exploration,
distributed acting, and learn from sequences.

Now, does in work in practice?
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Retrace for deepRL

Several actor-critic architectures at DeepMind:

ACER (Actor-Critic for Experience Replay) [Wang et al., 2017]. Policy
gradient. Works for continuous actions.

Reactor (Retrace-actor) [Gruesly et al., 2018]. Use beta-LOO to update
policy. Use LSTM.

MPO (Maximum a posteriori Policy Optimization) [Abdolmaleki et al., 2018]
Soft (KL-regularized) policy improvement.

IMPALA (IMPortance Weighted Actor-Learner Architecture) [Espeholt et
al., 2018]. Heavily distributed agent. Uses V-trace.
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Reactor [Gruesly et al., 2018]

optimize
Q(,8)  ------. :
i AR s
Ex:)ee;;:;\ce A correct /A,/ )\ R |
uix,a) -7 ,* evaluate ~ [ % @)
Recurrent
Network
Observation

b Google DeepMind Research Engineering



Reactor performances on Atari

Reactor Time-Efficiency

250% r
g 200% |
(@]
g Reactor (10+1) co—
N 150% t Reactor (20+1)
E Rainbow o
o
i 100% | Prioritized DQN co—
£ A3C (16) enmm—
:? 50% ¢} DQN T ——

0%

25 50 100 200
Hours of Training
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Reactor performances on Atari

ALGORITHM NORMALIZED | MEAN | ELO ALGORITHM NORMALIZED | MEAN | ELO
SCORES RANK SCORES RANK
RANDOM 0.00 11.65 | -563 RANDOM 0.00 10.93 | -673
HUMAN 1.00 6.82 0 HUMAN 1.00 6.89 0
DQN 0.69 9.05 | -172 DQN 0.79 8.65 | -167
DDQN 14 7.63 -58 DDQN 1.18 728 -27
DUEL 1.17 6.35 39 DUEL 1.51 5.19 143
PRIOR 1.13 6.63 13 PRIOR 1.24 6.11 70
PRIOR. DUEL. 1.15 6.25 40 PRIOR. DUEL. 1.72 5.44 126
A3CLSTM 1.13 6.30 37 ACER® 500M 1.9 - -
RAINBOW 1.53 4.18 186 RAINBOW 2.31 3.63 270
REACTOR ND ° 1.51 4.98 126 REACTOR ND ° 1.80 4.53 195
REACTOR 1.65 4.58 156 REACTOR 1.87 4.46 196
REACTOR 500M 1.82 3.65 227 REACTOR 500M 2.30 3.47 280

Table 1: Random human starts Table 2: 30 random no-op starts.
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Control suite with MPO

MPO (Maximum a posteriori
Policy Optimization)

[Abdolmaleki et al., 2018]

on the DeepMind control suite

(set of continuous control tasks intended to serve
as performance benchmarks for RL agents)

See: https://www.youtube.com/watch?v=he_ BPw32PwU
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http://www.youtube.com/watch?v=he_BPw32PwU

IMPALA [Espeholt et al., 2018]

IMPortance Weighted Actor-Learner Architecture

Heavily distributed architecture
Many actors (CPU),
one (or more) learner (GPU)

Actors generate trajectories

and place them into a queue.
Learner dequeues and performs
parameter updates.

Stale experience
— requires off-policy learning: V-trace

Parameters

Observations

Remi Munos DeepMind



V-trace: off-policy algorithm using V-values

V-trace = Modified version of Retrace where we learn V instead of Q
e The V-Trace corrected estimate for the value V(x ) is:

s+n—1 t—1
def _
5 ¥ V) + Y S(ch.) pe(re + AV (Teg1) — V(ze))
t=s 1=S 6}
e where pi & min (p, f24) and ¢ ¥ min (¢ J(EE5) .

min (pu(ale), 7(al))

Converges to
* J 5=, min (P (bl2), 7(0]2)

e The V-Trace update for the value function is: (vs — V(z,)) VV (zs)

e The V-Trace update for the policy is: psVlog m(as|zs)(rs + Yvsi1 — V(zs))
@ DeepMind



Impala Architectures

Small CNN-LSTM

7 (ar) |

@ DeepMind

Deep ResNet CNN-LSTM

7 (at) Vi

Tt—-1 a¢—1

Embedding 20

blue ladder

i Residual Block
Residual Block | ™

*3

Conv. 3 x 3, stride 1

Conv. 3 x 3,stride 1

Conv. 3 x 3,stride 1




DMLab-30 Task Set 2&1\& DeepMind Lab

e Set of 30 cognitive tasks in DeepMind Lab 3D environment.

e Many of the tasks are procedurally generated.

Grounded Language Memory Outdoor Foraging Navigation




DMLab-30 Task Set

Individual task:
An agent trained per
task

Multi-tasks:

A single agent trained
on all tasks
simultaneously

b DeepMind



Performance of Impala on DMLab-30

— |MPALA, deep, PBT - 8 GPUs = [MPALA, shallow — |[MPALA, deep, PBT - 8 GPUs =—— |IMPALA, shallow
IMPALA, deep, PBT IMPALA-Experts, deep IMPALA, deep, PBT IMPALA-Experts, deep

—— |[MPALA, deep —— A3C, deep - |[MPALA, deep — A3C, deep

(7 S S S D i S A A S S R e

N
o
N
o

N

o
N
o

Mean Capped Normalized Score
3
o
o

Mean Capped Normalized Score
w
o

o

0
0.0 0.2 0.4 0.6 0.8 1.0 20 40 60 80 100 120 140 160 180
Environment Frames lel0 Wall Clock Time (hours)

o

e IMPALA outperforms A3C (10x more data efficient, 2x overall final performance)

e Positive transfer in multi-task training

@ DeepMind



IMPALA Videos - Mushroom foraging task

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

Mushroom foraging task. The agent must collect mushrooms within a naturalistic terrain environment to
b DeepMind maximise score. The mushrooms do not regrow. The map is randomly generated. The spawn location is
randomized for each episode. Foraging task


http://www.youtube.com/watch?v=q081qM7gGj8

IMPALA Videos - Select Located Object task

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30
15 n n

The agent is asked to collect a specified coloured object in a specified coloured room. Example: “Pick the
(b DeepMind red object in the blue room.” Language task


http://www.youtube.com/watch?v=Ko7f9hnX5es

IMPALA Videos - Object Locations

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30
Hill = - il

The agent must collect as many apples as possible before the episode ends to maximise their score.
Upon collecting all of the apples, the level will reset, repeating until the episode ends. Apple
b DeepMind locations, level layout and theme are randomized per episode. Navigation task


http://www.youtube.com/watch?v=bSzIDiWa2uY

IMPALA Videos - Obstructed Goals

S
See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

S DL O D Raes

Agents are required to find the goal as fast as possible, but now with randomly opened and closed
b DeepMind doors. Navigation task


http://www.youtube.com/watch?v=nGddvGLvkbk

IMPALA Videos - Keys Doors Puzzle

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30
SUGS Z1EF A | ]

A procedural planning puzzle. The agent must reach the goal object, located in a position that is
(b DeeoMind blocked by a series of coloured doors. Coloured keys can be used to open matching doors once.
eepivin Collecting keys in the wrong order can make the goal unreachable. Requires planning


http://www.youtube.com/watch?v=ZRD1vFbUdrE

IMPALA Videos - Select Non-matching Object

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

Uy ) = sl

The agent must choose an object that is different from the one it has seen before. The agent is placed into
7 a first room containing an object and a teleport pad. Touching the pad teleports the agent to a second
b DeepMind  room containing two objects, one of which matches the object in the previous room. Requires memory


http://www.youtube.com/watch?v=46hxLxkrLlk

IMPALA Videos - Watermaze

hegt®

See: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

The agent must find a hidden platform which, when found, generates a reward. This is difficult to find the
first time, but in subsequent trials the agent should try to remember where it is and go straight back to this
b DeepMind  Place. Tests episodic memory and navigation ability. Requires episodic memory



http://www.youtube.com/watch?v=9XkGLVvY4yg

We need more fundamental research in deep RL!

DeepRL is a super exciting research topic.

We need new idea, new algorithms, new theories!

Please join the fun!
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